

    
      
          
            
  
Dask Cloud Provider

Native Cloud integration for Dask.

This package provides classes for constructing and managing ephemeral Dask clusters on various
cloud platforms.

Dask Cloud Provider is one of many options for deploying Dask clusters, see Deploying Dask [https://docs.dask.org/en/stable/deploying.html#distributed-computing] in the Dask documentation for an overview of additional options.

To use a cloud provider cluster manager you can import it and instantiate it. Instantiating the class
will result in cloud resources being created for you.

from dask_cloudprovider.aws import FargateCluster
cluster = FargateCluster(
    # Cluster manager specific config kwargs
)





You can then construct a Dask client with that cluster object to use the cluster.

from dask.distributed import Client
client = Client(cluster)





Once you are connected to the cluster you can go ahead and use Dask and all computation will take
place on your cloud resource.

Once you are finished be sure to close out your cluster to shut down any cloud resources you have and end any charges.

cluster.close()






Warning

Cluster managers will attempt to automatically remove hanging cloud resources on garbage collection if the cluster
object is destroyed without calling cluster.close(), however this is not guaranteed.



To implicitly close your cluster when you are done with it you can optionally contruct the cluster manager via a
context manager. However this will result in the creation and destruction of the whole cluster whenever you run
this code.

from dask_cloudprovider.aws import FargateCluster
from dask.distributed import Client

with FargateCluster(...) as cluster:
    with Client(cluster) as client:
        # Do some Dask things





















            

          

      

      

    

  

    
      
          
            
  
Installation


Pip

$ pip install dask-cloudprovider[all]





You can also restrict your install to just a specific cloud provider by giving their name instead of all.

$ pip install dask-cloudprovider[aws]  # or
$ pip install dask-cloudprovider[azure]  # or
$ pip install dask-cloudprovider[azureml]  # or
$ pip install dask-cloudprovider[digitalocean]  # or
$ pip install dask-cloudprovider[gcp]








Conda

$ conda install -c conda-forge dask-cloudprovider











            

          

      

      

    

  

    
      
          
            
  
Configuration

Each cluster manager in Dask Cloudprovider will require some configuration specific to the cloud
services you wish to use. Many config options will have sensible defaults and often you can create
a cluster with just your authentication credentials configured.


Authentication

All cluster managers assume you have already configured your credentials for the cloud you are using.

For AWS this would mean storing your access key and secret key in ~/.aws/credentials. The AWS CLI
can create this for you by running the command aws configure.

See each cluster manager for specific details.


Warning

Most cluster managers also allow passing credentials as keyword arguments, although this would result in
credentials being stored in code and is not advised.






Cluster config

Configuration can be passed to a cluster manager via keyword arguments, YAML config or environment variables.

For example the FargateCluster manager for AWS ECS takes a scheduler_mem configuration option to set how much memory
to give the scheduler in megabytes. This can be configured in the following ways.

from dask_cloudprovider.aws import FargateCluster

cluster = FargateCluster(
    scheduler_mem=8192
)





# ~/.config/dask/cloudprovider.yaml

cloudprovider:
  ecs:
    scheduler_mem: 8192





$ export DASK_CLOUDPROVIDER__ECS__SCHEDULER_MEM=8192





See each cluster manager and the Dask configuration docs [https://docs.dask.org/en/latest/configuration.html] for more information.







            

          

      

      

    

  

    
      
          
            
  
Amazon Web Services (AWS)







	EC2Cluster([region, availability_zone, ...])

	Deploy a Dask cluster using EC2.



	ECSCluster([fargate_scheduler, ...])

	Deploy a Dask cluster using ECS



	FargateCluster(**kwargs)

	Deploy a Dask cluster using Fargate on ECS







Overview


Authentication

In order to create clusters on AWS you need to set your access key, secret key
and region. The simplest way is to use the aws command line tool.

$ pip install awscli
$ aws configure








Credentials

In order for your Dask workers to be able to connect to other AWS resources such as S3 they will need credentials.

This can be done by attaching IAM roles to individual resources or by passing credentials as environment variables. See
each cluster manager docstring for more information.






Elastic Compute Cloud (EC2)


	
class dask_cloudprovider.aws.EC2Cluster(region=None, availability_zone=None, bootstrap=None, auto_shutdown=None, ami=None, instance_type=None, scheduler_instance_type=None, worker_instance_type=None, vpc=None, subnet_id=None, security_groups=None, filesystem_size=None, key_name=None, iam_instance_profile=None, docker_image=None, debug=False, instance_tags=None, volume_tags=None, use_private_ip=None, enable_detailed_monitoring=None, **kwargs)

	Deploy a Dask cluster using EC2.


This creates a Dask scheduler and workers on EC2 instances.

All instances will run a single configurable Docker container which should contain
a valid Python environment with Dask and any other dependencies.

All optional parameters can also be configured in a cloudprovider.yaml file
in your Dask configuration directory or via environment variables.

For example ami can be set via DASK_CLOUDPROVIDER__EC2__AMI.

See https://docs.dask.org/en/latest/configuration.html for more info.





	Parameters

	
	region: string (optional)
	The region to start your clusters. By default this will be detected from your config.



	availability_zone: string or List(string) (optional)
	The availability zone to start your clusters. By default AWS will select the AZ with most free capacity.
If you specify more than one then scheduler and worker VMs will be randomly assigned to one of your
chosen AZs.



	bootstrap: bool (optional)
	It is assumed that the ami will not have Docker installed (or the NVIDIA drivers for GPU instances).
If bootstrap is True these dependencies will be installed on instance start. If you are using
a custom AMI which already has these dependencies set this to False.



	worker_command: string (optional)
	The command workers should run when starting. By default this will be "dask-worker" unless
instance_type is a GPU instance in which case dask-cuda-worker will be used.



	ami: string (optional)
	The base OS AMI to use for scheduler and workers.

This must be a Debian flavour distribution. By default this will be the latest official
Ubuntu 20.04 LTS release from canonical.

If the AMI does not include Docker it will be installed at runtime.
If the instance_type is a GPU instance the NVIDIA drivers and Docker GPU runtime will be installed
at runtime.



	instance_type: string (optional)
	A valid EC2 instance type. This will determine the resources available to the scheduler and all workers.
If supplied, you may not specify scheduler_instance_type or worker_instance_type.

See https://aws.amazon.com/ec2/instance-types/.

By default will use t2.micro.



	scheduler_instance_type: string (optional)
	A valid EC2 instance type.  This will determine the resources available to the scheduler.

See https://aws.amazon.com/ec2/instance-types/.

By default will use t2.micro.



	worker_instance_type: string (optional)
	A valid EC2 instance type.  This will determine the resources available to all workers.

See https://aws.amazon.com/ec2/instance-types/.

By default will use t2.micro.



	vpc: string (optional)
	The VPC ID in which to launch the instances.

Will detect and use the default VPC if not specified.



	subnet_id: string (optional)
	The Subnet ID in which to launch the instances.

Will use all subnets for the VPC if not specified.



	security_groups: List(string) (optional)
	The security group ID that will be attached to the workers.

Must allow all traffic between instances in the security group and ports 8786 and 8787 between
the scheduler instance and wherever you are calling EC2Cluster from.

By default a Dask security group will be created with ports 8786 and 8787 exposed to the internet.



	filesystem_size: int (optional)
	The instance filesystem size in GB.

Defaults to 40.



	key_name: str (optional)
	The SSH key name to assign to all instances created by the cluster manager.
You can list your existing key pair names with
aws ec2 describe-key-pairs  --query 'KeyPairs[*].KeyName' --output text.

NOTE: You will need to ensure your security group allows access on port 22. If security_groups
is not set the default group will not contain this rule and you will need to add it manually.



	iam_instance_profile: dict (optional)
	An IAM profile to assign to VMs. This can be used for allowing access to other AWS resources such as S3.
See https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html.



	n_workers: int
	Number of workers to initialise the cluster with. Defaults to 0.



	worker_module: str
	The Python module to run for the worker. Defaults to distributed.cli.dask_worker



	worker_options: dict
	Params to be passed to the worker class.
See distributed.worker.Worker [https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker] for default worker class.
If you set worker_module then refer to the docstring for the custom worker class.



	scheduler_options: dict
	Params to be passed to the scheduler class.
See distributed.scheduler.Scheduler [https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler].



	docker_image: string (optional)
	The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the Python
environment matches your local environment where EC2Cluster is being created from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda installed.

By default the daskdev/dask:latest image will be used.



	docker_args: string (optional)
	Extra command line arguments to pass to Docker.



	env_vars: dict (optional)
	Environment variables to be passed to the worker.



	silence_logs: bool
	Whether or not we should silence logging when setting up the cluster.



	asynchronous: bool
	If this is intended to be used directly within an event loop with
async/await



	securitySecurity or bool, optional
	Configures communication security in this cluster. Can be a security
object, or True. If True, temporary self-signed credentials will
be created automatically. Default is True.



	debug: bool, optional
	More information will be printed when constructing clusters to enable debugging.



	instance_tags: dict, optional
	Tags to be applied to all EC2 instances upon creation. By default, includes
“createdBy”: “dask-cloudprovider”



	volume_tags: dict, optional
	Tags to be applied to all EBS volumes upon creation. By default, includes
“createdBy”: “dask-cloudprovider”



	use_private_ip: bool (optional)
	Whether to use a private IP (if True) or public IP (if False).

Default False.



	enable_detailed_monitoring: bool (optional)
	Whether to enable detailed monitoring for created instances.
See https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch-new.html
Default False.









Notes

Resources created









	Resource

	Name

	Purpose

	Cost





	EC2 Instance

	dask-scheduler-{cluster uuid}

	Dask Scheduler

	EC2 Pricing [https://aws.amazon.com/ec2/pricing/]



	EC2 Instance

	dask-worker-{cluster uuid}-{worker uuid}

	Dask Workers

	EC2 Pricing [https://aws.amazon.com/ec2/pricing/]






Credentials

In order for Dask workers to access AWS resources such as S3 they will need credentials.

The best practice way of doing this is to pass an IAM role to be used by workers. See the iam_instance_profile
keyword for more information.

Alternatively you could read in your local credentials created with aws configure and pass them along
as environment variables. Here is a small example to help you do that.

>>> def get_aws_credentials():
...     parser = configparser.RawConfigParser()
...     parser.read(os.path.expanduser('~/.aws/config'))
...     config = parser.items('default')
...     parser.read(os.path.expanduser('~/.aws/credentials'))
...     credentials = parser.items('default')
...     all_credentials = {key.upper(): value for key, value in [*config, *credentials]}
...     with contextlib.suppress(KeyError):
...         all_credentials["AWS_REGION"] = all_credentials.pop("REGION")
...     return all_credentials
>>> cluster = EC2Cluster(env_vars=get_aws_credentials())





Manual cleanup

If for some reason the cluster manager is terminated without being able to perform cleanup
the default behaviour of EC2Cluster is for the scheduler and workers to time out. This will
result in the host VMs shutting down. This cluster manager also creates instances with the terminate on
shutdown setting so all resources should be removed automatically.

If for some reason you chose to override those settings and disable auto cleanup you can destroy resources with the
following CLI command.

export CLUSTER_ID="cluster id printed during creation"
aws ec2 describe-instances \
    --filters "Name=tag:Dask Cluster,Values=${CLUSTER_ID}" \
    --query "Reservations[*].Instances[*].[InstanceId]" \
    --output text | xargs aws ec2 terminate-instances --instance-ids






Enable SSH for debugging

>>> from dask_cloudprovider.aws import EC2Cluster
>>> cluster = EC2Cluster(key_name="myawesomekey",
                         # Security group which allows ports 22, 8786, 8787 and all internal traffic
                         security_groups=["sg-aabbcc112233"])





# You can now SSH to an instance with ssh ubuntu@public_ip

>>> cluster.close()









	Attributes

	
	asynchronous
	Are we running in the event loop?



	auto_shutdown
	

	bootstrap
	

	command
	

	dashboard_link
	

	docker_image
	

	gpu_instance
	

	loop
	

	name
	

	observed
	

	plan
	

	requested
	

	scheduler_address
	

	scheduler_class
	

	worker_class
	







Methods







	adapt([Adaptive, minimum, maximum, ...])

	Turn on adaptivity



	call_async(f, *args, **kwargs)

	Run a blocking function in a thread as a coroutine.



	from_name(name)

	Create an instance of this class to represent an existing cluster by name.



	get_client()

	Return client for the cluster



	get_logs([cluster, scheduler, workers])

	Return logs for the cluster, scheduler and workers



	get_tags()

	Generate tags to be applied to all resources.



	new_worker_spec()

	Return name and spec for the next worker



	scale([n, memory, cores])

	Scale cluster to n workers



	scale_up([n, memory, cores])

	Scale cluster to n workers



	sync(func, *args[, asynchronous, ...])

	Call func with args synchronously or asynchronously depending on the calling context



	wait_for_workers([n_workers, timeout])

	Blocking call to wait for n workers before continuing












	close

	


	get_cloud_init

	


	logs

	


	render_cloud_init

	


	render_process_cloud_init

	


	scale_down

	












Elastic Container Service (ECS)


	
class dask_cloudprovider.aws.ECSCluster(fargate_scheduler=None, fargate_workers=None, fargate_spot=None, image=None, scheduler_cpu=None, scheduler_mem=None, scheduler_port=8786, scheduler_timeout=None, scheduler_extra_args=None, scheduler_task_definition_arn=None, scheduler_task_kwargs=None, scheduler_address=None, worker_cpu=None, worker_nthreads=None, worker_mem=None, worker_gpu=None, worker_extra_args=None, worker_task_definition_arn=None, worker_task_kwargs=None, n_workers=None, workers_name_start=0, workers_name_step=1, cluster_arn=None, cluster_name_template=None, execution_role_arn=None, task_role_arn=None, task_role_policies=None, cloudwatch_logs_group=None, cloudwatch_logs_stream_prefix=None, cloudwatch_logs_default_retention=None, vpc=None, subnets=None, security_groups=None, environment=None, tags=None, skip_cleanup=None, aws_access_key_id=None, aws_secret_access_key=None, region_name=None, platform_version=None, fargate_use_private_ip=False, mount_points=None, volumes=None, mount_volumes_on_scheduler=False, **kwargs)

	Deploy a Dask cluster using ECS

This creates a dask scheduler and workers on an existing ECS cluster.

All the other required resources such as roles, task definitions, tasks, etc
will be created automatically like in FargateCluster.


	Parameters

	
	fargate_scheduler: bool (optional)
	Select whether or not to use fargate for the scheduler.

Defaults to False. You must provide an existing cluster.



	fargate_workers: bool (optional)
	Select whether or not to use fargate for the workers.

Defaults to False. You must provide an existing cluster.



	fargate_spot: bool (optional)
	Select whether or not to run cluster using Fargate Spot with workers running on spot capacity.
If fargate_scheduler=True and fargate_workers=True, this will make sure worker tasks will use
fargate_capacity_provider=FARGATE_SPOT and scheduler task will use
fargate_capacity_provider=FARGATE capacity providers.

Defaults to False. You must provide an existing cluster.



	image: str (optional)
	The docker image to use for the scheduler and worker tasks.

Defaults to daskdev/dask:latest or rapidsai/rapidsai:latest if worker_gpu is set.



	scheduler_cpu: int (optional)
	The amount of CPU to request for the scheduler in milli-cpu (1/1024).

Defaults to 1024 (one vCPU).
See the troubleshooting guide for information on the valid values for this argument.



	scheduler_mem: int (optional)
	The amount of memory to request for the scheduler in MB.

Defaults to 4096 (4GB).
See the troubleshooting guide for information on the valid values for this argument.



	scheduler_timeout: str (optional)
	The scheduler task will exit after this amount of time if there are no clients connected.

Defaults to 5 minutes.



	scheduler_port: int (optional)
	The port on which the scheduler should listen.

Defaults to 8786



	scheduler_extra_args: List[str] (optional)
	Any extra command line arguments to pass to dask-scheduler, e.g. ["--tls-cert", "/path/to/cert.pem"]

Defaults to None, no extra command line arguments.



	scheduler_task_definition_arn: str (optional)
	The arn of the task definition that the cluster should use to start the scheduler task. If provided, this will
override the image, scheduler_cpu, scheduler_mem, any role settings, any networking / VPC settings, as
these are all part of the task definition.

Defaults to None, meaning that the task definition will be created along with the cluster, and cleaned up once
the cluster is shut down.



	scheduler_task_kwargs: dict (optional)
	Additional keyword arguments for the scheduler ECS task.



	scheduler_address: str (optional)
	If passed, no scheduler task will be started, and instead the workers will connect to the passed address.

Defaults to None, a scheduler task will start.



	worker_cpu: int (optional)
	The amount of CPU to request for worker tasks in milli-cpu (1/1024).

Defaults to 4096 (four vCPUs).
See the troubleshooting guide for information on the valid values for this argument.



	worker_nthreads: int (optional)
	The number of threads to use in each worker.

Defaults to 1 per vCPU.



	worker_mem: int (optional)
	The amount of memory to request for worker tasks in MB.

Defaults to 16384 (16GB).
See the troubleshooting guide for information on the valid values for this argument.



	worker_gpu: int (optional)
	The number of GPUs to expose to the worker.

To provide GPUs to workers you need to use a GPU ready docker image
that has dask-cuda installed and GPU nodes available in your ECS
cluster. Fargate is not supported at this time.

Defaults to None, no GPUs.



	worker_task_definition_arn: str (optional)
	The arn of the task definition that the cluster should use to start the worker tasks. If provided, this will
override the image, worker_cpu, worker_mem, any role settings, any networking / VPC settings, as
these are all part of the task definition.

Defaults to None, meaning that the task definition will be created along with the cluster, and cleaned up once
the cluster is shut down.



	worker_extra_args: List[str] (optional)
	Any extra command line arguments to pass to dask-worker, e.g. ["--tls-cert", "/path/to/cert.pem"]

Defaults to None, no extra command line arguments.



	worker_task_kwargs: dict (optional)
	Additional keyword arguments for the workers ECS task.



	n_workers: int (optional)
	Number of workers to start on cluster creation.

Defaults to None.



	workers_name_start: int
	Name workers from here on.

Defaults to 0.



	workers_name_step: int
	Name workers by adding multiples of workers_name_step to workers_name_start.

Default to 1.



	cluster_arn: str (optional if fargate is true)
	The ARN of an existing ECS cluster to use for launching tasks.

Defaults to None which results in a new cluster being created for you.



	cluster_name_template: str (optional)
	A template to use for the cluster name if cluster_arn is set to
None.

Defaults to 'dask-{uuid}'



	execution_role_arn: str (optional)
	The ARN of an existing IAM role to use for ECS execution.

This ARN must have sts:AssumeRole allowed for
ecs-tasks.amazonaws.com and allow the following permissions:


	ecr:GetAuthorizationToken


	ecr:BatchCheckLayerAvailability


	ecr:GetDownloadUrlForLayer


	ecr:GetRepositoryPolicy


	ecr:DescribeRepositories


	ecr:ListImages


	ecr:DescribeImages


	ecr:BatchGetImage


	logs:*


	ec2:AuthorizeSecurityGroupIngress


	ec2:Describe*


	elasticloadbalancing:DeregisterInstancesFromLoadBalancer


	elasticloadbalancing:DeregisterTargets


	elasticloadbalancing:Describe*


	elasticloadbalancing:RegisterInstancesWithLoadBalancer


	elasticloadbalancing:RegisterTargets




Defaults to None (one will be created for you).



	task_role_arn: str (optional)
	The ARN for an existing IAM role for tasks to assume. This defines
which AWS resources the dask workers can access directly. Useful if
you need to read from S3 or a database without passing credentials
around.

Defaults to None (one will be created with S3 read permission only).



	task_role_policies: List[str] (optional)
	If you do not specify a task_role_arn you may want to list some
IAM Policy ARNs to be attached to the role that will be created for you.

E.g if you need your workers to read from S3 you could add
arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess.

Default None (no policies will be attached to the role)



	cloudwatch_logs_group: str (optional)
	The name of an existing cloudwatch log group to place logs into.

Default None (one will be created called dask-ecs)



	cloudwatch_logs_stream_prefix: str (optional)
	Prefix for log streams.

Defaults to the cluster name.



	cloudwatch_logs_default_retention: int (optional)
	Retention for logs in days. For use when log group is auto created.

Defaults to 30.



	vpc: str (optional)
	The ID of the VPC you wish to launch your cluster in.

Defaults to None (your default VPC will be used).



	subnets: List[str] (optional)
	A list of subnets to use when running your task.

Defaults to None. (all subnets available in your VPC will be used)



	security_groups: List[str] (optional)
	A list of security group IDs to use when launching tasks.

Defaults to None (one will be created which allows all traffic
between tasks and access to ports 8786 and 8787 from anywhere).



	environment: dict (optional)
	Extra environment variables to pass to the scheduler and worker tasks.

Useful for setting EXTRA_APT_PACKAGES, EXTRA_CONDA_PACKAGES and
`EXTRA_PIP_PACKAGES if you’re using the default image.

Defaults to None.



	tags: dict (optional)
	Tags to apply to all resources created automatically.

Defaults to None. Tags will always include {"createdBy": "dask-cloudprovider"}



	skip_cleanup: bool (optional)
	Skip cleaning up of stale resources. Useful if you have lots of resources
and this operation takes a while.

Default False.



	platform_version: str (optional)
	Version of the AWS Fargate platform to use, e.g. “1.4.0” or “LATEST”. This
setting has no effect for the EC2 launch type.

Defaults to None



	fargate_use_private_ip: bool (optional)
	Whether to use a private IP (if True) or public IP (if False) with Fargate.

Default False.



	mount_points: list (optional)
	List of mount points as documented here:
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html

Default None.



	volumes: list (optional)
	List of volumes as documented here: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html

Default None.



	mount_volumes_on_scheduler: bool (optional)
	Whether to also mount volumes in the scheduler task. Any volumes and mount points specified will always be
mounted in worker tasks. This setting controls whether volumes are also mounted in the scheduler task.

Default False.



	**kwargs: dict
	Additional keyword arguments to pass to SpecCluster.









Examples

>>> from dask_cloudprovider.aws import ECSCluster
>>> cluster = ECSCluster(cluster_arn="arn:aws:ecs:<region>:<acctid>:cluster/<clustername>")





There is also support in ECSCluster for GPU aware Dask clusters. To do
this you need to create an ECS cluster with GPU capable instances (from the
g3, p3 or p3dn families) and specify the number of GPUs each worker task
should have.

>>> from dask_cloudprovider.aws import ECSCluster
>>> cluster = ECSCluster(
...     cluster_arn="arn:aws:ecs:<region>:<acctid>:cluster/<gpuclustername>",
...     worker_gpu=1)





By setting the worker_gpu option to something other than None will cause the cluster
to run dask-cuda-worker as the worker startup command. Setting this option will also change
the default Docker image to rapidsai/rapidsai:latest, if you’re using a custom image
you must ensure the NVIDIA CUDA toolkit is installed with a version that matches the host machine
along with dask-cuda.


	Attributes

	
	asynchronous
	Are we running in the event loop?



	dashboard_link
	

	loop
	

	name
	

	observed
	

	plan
	

	requested
	

	scheduler_address
	

	tags
	







Methods







	adapt([Adaptive, minimum, maximum, ...])

	Turn on adaptivity



	from_name(name)

	Create an instance of this class to represent an existing cluster by name.



	get_client()

	Return client for the cluster



	get_logs([cluster, scheduler, workers])

	Return logs for the cluster, scheduler and workers



	new_worker_spec()

	Return name and spec for the next worker



	scale([n, memory, cores])

	Scale cluster to n workers



	scale_up([n, memory, cores])

	Scale cluster to n workers



	sync(func, *args[, asynchronous, ...])

	Call func with args synchronously or asynchronously depending on the calling context



	update_attr_from_config(attr, private)

	Update class attribute of given cluster based on config, if not already set.



	wait_for_workers([n_workers, timeout])

	Blocking call to wait for n workers before continuing












	close

	


	logs

	


	scale_down

	












Fargate


	
class dask_cloudprovider.aws.FargateCluster(**kwargs)

	Deploy a Dask cluster using Fargate on ECS

This creates a dask scheduler and workers on a Fargate powered ECS cluster.
If you do not configure a cluster one will be created for you with sensible
defaults.


	Parameters

	
	kwargs: dict
	Keyword arguments to be passed to ECSCluster.









Notes

IAM Permissions

To create a FargateCluster the cluster manager will need to use various AWS resources ranging from IAM roles to
VPCs to ECS tasks. Depending on your use case you may want the cluster to create all of these for you, or you
may wish to specify them yourself ahead of time.

Here is the full minimal IAM policy that you need to create the whole cluster:

{
    "Statement": [
        {
            "Action": [
                "ec2:AuthorizeSecurityGroupIngress",
                "ec2:CreateSecurityGroup",
                "ec2:CreateTags",
                "ec2:DescribeNetworkInterfaces",
                "ec2:DescribeSecurityGroups",
                "ec2:DescribeSubnets",
                "ec2:DescribeVpcs",
                "ec2:DeleteSecurityGroup",
                "ecs:CreateCluster",
                "ecs:DescribeTasks",
                "ecs:ListAccountSettings",
                "ecs:RegisterTaskDefinition",
                "ecs:RunTask",
                "ecs:StopTask",
                "ecs:ListClusters",
                "ecs:DescribeClusters",
                "ecs:DeleteCluster",
                "ecs:ListTaskDefinitions",
                "ecs:DescribeTaskDefinition",
                "ecs:DeregisterTaskDefinition",
                "iam:AttachRolePolicy",
                "iam:CreateRole",
                "iam:TagRole",
                "iam:PassRole",
                "iam:DeleteRole",
                "iam:ListRoles",
                "iam:ListRoleTags",
                "iam:ListAttachedRolePolicies",
                "iam:DetachRolePolicy",
                "logs:DescribeLogGroups",
                "logs:GetLogEvents",
                "logs:CreateLogGroup",
                "logs:PutRetentionPolicy"
            ],
            "Effect": "Allow",
            "Resource": [
                "*"
            ]
        }
    ],
    "Version": "2012-10-17"
}





If you specify all of the resources yourself you will need a minimal policy of:

{
    "Statement": [
        {
            "Action": [
                "ec2:CreateTags",
                "ec2:DescribeNetworkInterfaces",
                "ec2:DescribeSecurityGroups",
                "ec2:DescribeSubnets",
                "ec2:DescribeVpcs",
                "ecs:DescribeTasks",
                "ecs:ListAccountSettings",
                "ecs:RegisterTaskDefinition",
                "ecs:RunTask",
                "ecs:StopTask",
                "ecs:ListClusters",
                "ecs:DescribeClusters",
                "ecs:ListTaskDefinitions",
                "ecs:DescribeTaskDefinition",
                "ecs:DeregisterTaskDefinition",
                "iam:ListRoles",
                "iam:ListRoleTags",
                "logs:DescribeLogGroups",
                "logs:GetLogEvents"
            ],
            "Effect": "Allow",
            "Resource": [
                "*"
            ]
        }
    ],
    "Version": "2012-10-17"
}





Examples

The FargateCluster will create a new Fargate ECS cluster by default along
with all the IAM roles, security groups, and so on that it needs to function.

>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster()





Note that in many cases you will want to specify a custom Docker image to FargateCluster so that Dask has the
packages it needs to execute your workflow.

>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster(image="<hub-user>/<repo-name>[:<tag>]")





To run cluster with workers using Fargate Spot
(<https://aws.amazon.com/blogs/aws/aws-fargate-spot-now-generally-available/>) set fargate_spot=True

>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster(fargate_spot=True)





One strategy to ensure that package versions match between your custom environment and the Docker container is to
create your environment from an environment.yml file, export the exact package list for that environment using
conda list --export > package-list.txt, and then use the pinned package versions contained in
package-list.txt in your Dockerfile.  You could use the default
Dask Dockerfile [https://github.com/dask/dask-docker/blob/master/base/Dockerfile] as a template and simply add
your pinned additional packages.


	Attributes

	
	asynchronous
	Are we running in the event loop?



	dashboard_link
	

	loop
	

	name
	

	observed
	

	plan
	

	requested
	

	scheduler_address
	

	tags
	







Methods







	adapt([Adaptive, minimum, maximum, ...])

	Turn on adaptivity



	from_name(name)

	Create an instance of this class to represent an existing cluster by name.



	get_client()

	Return client for the cluster



	get_logs([cluster, scheduler, workers])

	Return logs for the cluster, scheduler and workers



	new_worker_spec()

	Return name and spec for the next worker



	scale([n, memory, cores])

	Scale cluster to n workers



	scale_up([n, memory, cores])

	Scale cluster to n workers



	sync(func, *args[, asynchronous, ...])

	Call func with args synchronously or asynchronously depending on the calling context



	update_attr_from_config(attr, private)

	Update class attribute of given cluster based on config, if not already set.



	wait_for_workers([n_workers, timeout])

	Blocking call to wait for n workers before continuing












	close

	


	logs

	


	scale_down

	















            

          

      

      

    

  

    
      
          
            
  
DigitalOcean







	DropletCluster([region, size, image, debug])

	Cluster running on Digital Ocean droplets.







Overview


Authentication

To authenticate with DigitalOcean you must first generate a
personal access token [https://www.digitalocean.com/docs/apis-clis/api/create-personal-access-token/].

Then you must put this in your Dask configuration at cloudprovider.digitalocean.token. This can be done by
adding the token to your YAML configuration or exporting an environment variable.

# ~/.config/dask/cloudprovider.yaml

cloudprovider:
  digitalocean:
    token: "yourtoken"





$ export DASK_CLOUDPROVIDER__DIGITALOCEAN__TOKEN="yourtoken"










Droplet


	
class dask_cloudprovider.digitalocean.DropletCluster(region: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, size: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, image: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, debug: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs)

	Cluster running on Digital Ocean droplets.

VMs in DigitalOcean (DO) are referred to as droplets. This cluster manager constructs a Dask cluster
running on VMs.

When configuring your cluster you may find it useful to install the doctl tool for querying the
DO API for available options.

https://www.digitalocean.com/docs/apis-clis/doctl/how-to/install/


	Parameters

	
	region: str
	The DO region to launch you cluster in. A full list can be obtained with doctl compute region list.



	size: str
	The VM size slug. You can get a full list with doctl compute size list.
The default is s-1vcpu-1gb which is 1GB RAM and 1 vCPU



	image: str
	The image ID to use for the host OS. This should be a Ubuntu variant.
You can list available images with doctl compute image list --public | grep ubuntu.*x64.



	worker_module: str
	The Dask worker module to start on worker VMs.



	n_workers: int
	Number of workers to initialise the cluster with. Defaults to 0.



	worker_module: str
	The Python module to run for the worker. Defaults to distributed.cli.dask_worker



	worker_options: dict
	Params to be passed to the worker class.
See distributed.worker.Worker [https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker] for default worker class.
If you set worker_module then refer to the docstring for the custom worker class.



	scheduler_options: dict
	Params to be passed to the scheduler class.
See distributed.scheduler.Scheduler [https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler].



	docker_image: string (optional)
	The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the Python
environment matches your local environment where EC2Cluster is being created from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda installed.

By default the daskdev/dask:latest image will be used.



	docker_args: string (optional)
	Extra command line arguments to pass to Docker.



	extra_bootstrap: list[str] (optional)
	Extra commands to be run during the bootstrap phase.



	env_vars: dict (optional)
	Environment variables to be passed to the worker.



	silence_logs: bool
	Whether or not we should silence logging when setting up the cluster.



	asynchronous: bool
	If this is intended to be used directly within an event loop with
async/await



	securitySecurity or bool, optional
	Configures communication security in this cluster. Can be a security
object, or True. If True, temporary self-signed credentials will
be created automatically. Default is True.



	debug: bool, optional
	More information will be printed when constructing clusters to enable debugging.









Examples

Create the cluster.

>>> from dask_cloudprovider.digitalocean import DropletCluster
>>> cluster = DropletCluster(n_workers=1)
Creating scheduler instance
Created droplet dask-38b817c1-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Created droplet dask-38b817c1-worker-dc95260d





Connect a client.

>>> from dask.distributed import Client
>>> client = Client(cluster)





Do some work.

>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5001550986751964





Close the cluster

>>> client.close()
>>> cluster.close()
Terminated droplet dask-38b817c1-worker-dc95260d
Terminated droplet dask-38b817c1-scheduler





You can also do this all in one go with context managers to ensure the cluster is
created and cleaned up.

>>> with DropletCluster(n_workers=1) as cluster:
...     with Client(cluster) as client:
...         print(da.random.random((1000, 1000), chunks=(100, 100)).mean().compute())
Creating scheduler instance
Created droplet dask-48efe585-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Created droplet dask-48efe585-worker-5181aaf1
0.5000558682356162
Terminated droplet dask-48efe585-worker-5181aaf1
Terminated droplet dask-48efe585-scheduler






	Attributes

	
	asynchronous
	Are we running in the event loop?



	auto_shutdown
	

	bootstrap
	

	command
	

	dashboard_link
	

	docker_image
	

	gpu_instance
	

	loop
	

	name
	

	observed
	

	plan
	

	requested
	

	scheduler_address
	

	scheduler_class
	

	worker_class
	







Methods







	adapt([Adaptive, minimum, maximum, ...])

	Turn on adaptivity



	call_async(f, *args, **kwargs)

	Run a blocking function in a thread as a coroutine.



	from_name(name)

	Create an instance of this class to represent an existing cluster by name.



	get_client()

	Return client for the cluster



	get_logs([cluster, scheduler, workers])

	Return logs for the cluster, scheduler and workers



	get_tags()

	Generate tags to be applied to all resources.



	new_worker_spec()

	Return name and spec for the next worker



	scale([n, memory, cores])

	Scale cluster to n workers



	scale_up([n, memory, cores])

	Scale cluster to n workers



	sync(func, *args[, asynchronous, ...])

	Call func with args synchronously or asynchronously depending on the calling context



	wait_for_workers([n_workers, timeout])

	Blocking call to wait for n workers before continuing












	close

	


	get_cloud_init

	


	logs

	


	render_cloud_init

	


	render_process_cloud_init

	


	scale_down

	















            

          

      

      

    

  

    
      
          
            
  
Google Cloud Platform







	GCPCluster([projectid, zone, network, ...])

	Cluster running on GCP VM Instances.







Overview


Authentication

In order to create clusters on GCP you need to set your authentication credentials.
You can do this via the gcloud command line tool [https://cloud.google.com/sdk/gcloud].

$ gcloud auth login





Alternatively you can use a service account [https://cloud.google.com/iam/docs/service-accounts] which provides credentials in a JSON file.
You must set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path to the JSON file.

$ export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json








Project ID

To use Dask Cloudprovider with GCP you must also configure your Project ID [https://cloud.google.com/resource-manager/docs/creating-managing-projects].
Generally when creating a GCP account you will create a default project. This can be found at the top of the GCP dashboard.

Your Project ID must be added to your Dask config file.

# ~/.config/dask/cloudprovider.yaml
cloudprovider:
  gcp:
    projectid: "YOUR PROJECT ID"





Or via an environment variable.

$ export DASK_CLOUDPROVIDER__GCP__PROJECTID="YOUR PROJECT ID"










Google Cloud VMs


	
class dask_cloudprovider.gcp.GCPCluster(projectid=None, zone=None, network=None, network_projectid=None, machine_type=None, on_host_maintenance=None, source_image=None, docker_image=None, ngpus=None, gpu_type=None, filesystem_size=None, disk_type=None, auto_shutdown=None, bootstrap=True, preemptible=None, debug=False, instance_labels=None, service_account=None, **kwargs)

	Cluster running on GCP VM Instances.

This cluster manager constructs a Dask cluster running on Google Cloud Platform 67VMs.

When configuring your cluster you may find it useful to install the gcloud tool for querying the
GCP API for available options.

https://cloud.google.com/sdk/gcloud


	Parameters

	
	projectid: str
	Your GCP project ID. This must be set either here or in your Dask config.

https://cloud.google.com/resource-manager/docs/creating-managing-projects

See the GCP docs page for more info.

https://cloudprovider.dask.org/en/latest/gcp.html#project-id



	zone: str
	The GCP zone to launch you cluster in. A full list can be obtained with gcloud compute zones list.



	network: str
	The GCP VPC network/subnetwork to use.  The default is default.  If using firewall rules,
please ensure the follwing accesses are configured:



	egress 0.0.0.0/0 on all ports for downloading docker images and general data access


	ingress 10.0.0.0/8 on all ports for internal communication of workers


	ingress 0.0.0.0/0 on 8786-8787 for external accessibility of the dashboard/scheduler


	(optional) ingress 0.0.0.0./0 on 22 for ssh access









	network_projectid: str
	The project id of the GCP network. This defaults to the projectid. There may
be cases (i.e. Shared VPC) when network configurations from a different GCP project are used.



	machine_type: str
	The VM machine_type. You can get a full list with gcloud compute machine-types list.
The default is n1-standard-1 which is 3.75GB RAM and 1 vCPU



	source_image: str
	The OS image to use for the VM. Dask Cloudprovider will boostrap Ubuntu based images automatically.
Other images require Docker and for GPUs the NVIDIA Drivers and NVIDIA Docker.

A list of available images can be found with gcloud compute images list


	Valid values are:
	
	The short image name provided it is in projectid.


	The full image name projects/<projectid>/global/images/<source_image>.


	The full image URI such as those listed in gcloud compute images list --uri.








The default is projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-v20201014.



	docker_image: string (optional)
	The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the Python
environment matches your local environment where EC2Cluster is being created from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda installed.

By default the daskdev/dask:latest image will be used.



	docker_args: string (optional)
	Extra command line arguments to pass to Docker.



	extra_bootstrap: list[str] (optional)
	Extra commands to be run during the bootstrap phase.



	ngpus: int (optional)
	The number of GPUs to atatch to the instance.
Default is 0.



	gpu_type: str (optional)
	The name of the GPU to use. This must be set if ngpus>0.
You can see a list of GPUs available in each zone with gcloud compute accelerator-types list.



	filesystem_size: int (optional)
	The VM filesystem size in GB. Defaults to 50.



	disk_type: str (optional)
	Type of disk to use. Default is pd-standard.
You can see a list of disks available in each zone with gcloud compute disk-types list.



	on_host_maintenance: str (optional)
	The Host Maintenance GCP option.  Defaults to TERMINATE.



	n_workers: int (optional)
	Number of workers to initialise the cluster with. Defaults to 0.



	bootstrap: bool (optional)
	Install Docker and NVIDIA drivers if ngpus>0. Set to False if you are using a custom source_image
which already has these requirements. Defaults to True.



	worker_class: str
	The Python class to run for the worker. Defaults to dask.distributed.Nanny



	worker_options: dict (optional)
	Params to be passed to the worker class.
See distributed.worker.Worker [https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker] for default worker class.
If you set worker_class then refer to the docstring for the custom worker class.



	env_vars: dict (optional)
	Environment variables to be passed to the worker.



	scheduler_options: dict (optional)
	Params to be passed to the scheduler class.
See distributed.scheduler.Scheduler [https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler].



	silence_logs: bool (optional)
	Whether or not we should silence logging when setting up the cluster.



	asynchronous: bool (optional)
	If this is intended to be used directly within an event loop with
async/await



	securitySecurity or bool (optional)
	Configures communication security in this cluster. Can be a security
object, or True. If True, temporary self-signed credentials will
be created automatically. Default is True.



	preemptible: bool (optional)
	Whether to use preemptible instances for workers in this cluster. Defaults to False.



	debug: bool, optional
	More information will be printed when constructing clusters to enable debugging.



	instance_labels: dict (optional)
	Labels to be applied to all GCP instances upon creation.



	service_account: str
	Service account that all VMs will run under.
Defaults to the default Compute Engine service account for your GCP project.









Examples

Create the cluster.

>>> from dask_cloudprovider.gcp import GCPCluster
>>> cluster = GCPCluster(n_workers=1)
Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
Filesytsem Size: 50
N-GPU Type:
Zone: us-east1-c
Creating scheduler instance
dask-acc897b9-scheduler
        Internal IP: 10.142.0.37
        External IP: 34.75.60.62
Waiting for scheduler to run
Scheduler is running
Creating worker instance
dask-acc897b9-worker-bfbc94bc
        Internal IP: 10.142.0.39
        External IP: 34.73.245.220





Connect a client.

>>> from dask.distributed import Client
>>> client = Client(cluster)





Do some work.

>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5001550986751964





Close the cluster

>>> cluster.close()
Closing Instance: dask-acc897b9-worker-bfbc94bc
Closing Instance: dask-acc897b9-scheduler





You can also do this all in one go with context managers to ensure the cluster is
created and cleaned up.

>>> with GCPCluster(n_workers=1) as cluster:
...     with Client(cluster) as client:
...         print(da.random.random((1000, 1000), chunks=(100, 100)).mean().compute())
Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
Filesystem Size: 50
N-GPU Type:
Zone: us-east1-c
Creating scheduler instance
dask-19352f29-scheduler
        Internal IP: 10.142.0.41
        External IP: 34.73.217.251
Waiting for scheduler to run
Scheduler is running
Creating worker instance
dask-19352f29-worker-91a6bfe0
        Internal IP: 10.142.0.48
        External IP: 34.73.245.220
0.5000812282861661
Closing Instance: dask-19352f29-worker-91a6bfe0
Closing Instance: dask-19352f29-scheduler






	Attributes

	
	asynchronous
	Are we running in the event loop?



	auto_shutdown
	

	bootstrap
	

	command
	

	dashboard_link
	

	docker_image
	

	gpu_instance
	

	loop
	

	name
	

	observed
	

	plan
	

	requested
	

	scheduler_address
	

	scheduler_class
	

	worker_class
	







Methods







	adapt([Adaptive, minimum, maximum, ...])

	Turn on adaptivity



	call_async(f, *args, **kwargs)

	Run a blocking function in a thread as a coroutine.



	from_name(name)

	Create an instance of this class to represent an existing cluster by name.



	get_client()

	Return client for the cluster



	get_logs([cluster, scheduler, workers])

	Return logs for the cluster, scheduler and workers



	get_tags()

	Generate tags to be applied to all resources.



	new_worker_spec()

	Return name and spec for the next worker



	scale([n, memory, cores])

	Scale cluster to n workers



	scale_up([n, memory, cores])

	Scale cluster to n workers



	sync(func, *args[, asynchronous, ...])

	Call func with args synchronously or asynchronously depending on the calling context



	wait_for_workers([n_workers, timeout])

	Blocking call to wait for n workers before continuing












	close

	


	get_cloud_init

	


	logs

	


	render_cloud_init

	


	render_process_cloud_init

	


	scale_down

	















            

          

      

      

    

  

    
      
          
            
  
Microsoft Azure







	AzureVMCluster([location, resource_group, ...])

	Cluster running on Azure Virtual machines.







Overview


Authentication

In order to create clusters on Azure you need to set your authentication credentials.
You can do this via the az command line tool [https://docs.microsoft.com/en-us/cli/azure/install-azure-cli].

$ az login






Note

Setting the default output to table with az configure will make the az tool much easier to use.






Resource Groups

To create resources on Azure they must be placed in a resource group. Dask Cloudprovider will need a group to create
Dask components in.

You can list existing groups via the cli.

$ az group list





You can also create a new resource group if you do not have an existing one.

$ az group create --location <location> --name <resource group name> --subscription <subscription>





You can get a full list of locations with az account list-locations and subscriptions with az account list.

Take note of your resource group name for later.




Virtual Networks

Compute resources on Azure must be placed in virtual networks (vnet). Dask Cloudprovider will require an existing vnet to connect
compute resources to.

You can list existing vnets via the cli.

$ az network vnet list





You can also create a new vnet via the cli.

$ az network vnet create -g <resource group name> -n <vnet name> --address-prefix 10.0.0.0/16 \
      --subnet-name <subnet name> --subnet-prefix 10.0.0.0/24





This command will create a new vnet in your resource group with one subnet with the 10.0.0.0/24 prefix. For more than 255 compute resources you will need additional subnets.

Take note of your vnet name for later.




Security Groups

To allow network traffic to reach your Dask cluster you will need to create a security group which allows traffic on ports 8786-8787 from wherever you are.

You can list existing security groups via the cli.

$ az network nsg list





Or you can create a new security group.

$ az network nsg create -g <resource group name> --name <security group name>
$ az network nsg rule create -g <resource group name> --nsg-name <security group name> -n MyNsgRuleWithAsg \
      --priority 500 --source-address-prefixes Internet --destination-port-ranges 8786 8787 \
      --destination-address-prefixes '*' --access Allow --protocol Tcp --description "Allow Internet to Dask on ports 8786,8787."





This example allows all traffic to 8786-8787 from the internet. It is recommended you make your rules more restrictive than this by limiting it to your corporate network
or specific IP.

Again take note of this security group name for later.




Dask Configuration

You’ll provide the names or IDs of the Azure resources when you create a AzureVMCluster. You can specify
these values manually, or use Dask’s configuration system [https://docs.dask.org/en/stable/configuration.html]
system. For example, the resource_group value can be specified using an environment variable:

$ export DASK_CLOUDPROVIDER__AZURE__RESOURCE_GROUP="<resource group name>"
$ python





Or you can set it in a YAML configuration file.

cloudprovider:
  azure:
    resource_group: "<resource group name>"
    azurevm:
     vnet: "<vnet name>"





Note that the options controlling the VMs are under the cloudprovider.azure.azurevm key.

See Configuration for more.






AzureVM


	
class dask_cloudprovider.azure.AzureVMCluster(location: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, resource_group: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, vnet: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, security_group: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, public_ingress: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, vm_size: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, scheduler_vm_size: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, vm_image: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, disk_size: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, bootstrap: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, auto_shutdown: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, docker_image=None, debug: bool [https://docs.python.org/3/library/functions.html#bool] = False, marketplace_plan: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, subscription_id: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kwargs)

	Cluster running on Azure Virtual machines.

This cluster manager constructs a Dask cluster running on Azure Virtual Machines.

When configuring your cluster you may find it useful to install the az tool for querying the
Azure API for available options.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli


	Parameters

	
	location: str
	The Azure location to launch you cluster in. List available locations with az account list-locations.



	resource_group: str
	The resource group to create components in. List your resource groups with az group list.



	vnet: str
	The vnet to attach VM network interfaces to. List your vnets with az network vnet list.



	security_group: str
	The security group to apply to your VMs.
This must allow ports 8786-8787 from wherever you are running this from.
List your security groups with az network nsg list.



	public_ingress: bool
	Assign a public IP address to the scheduler. Default True.



	vm_size: str
	Azure VM size to use for scheduler and workers. Default Standard_DS1_v2.
List available VM sizes with az vm list-sizes --location <location>.



	disk_size: int
	Specifies the size of the VM host OS disk in gigabytes.
Default is 50. This value cannot be larger than 1023.



	scheduler_vm_size: str
	Azure VM size to use for scheduler. If not set will use the vm_size.



	vm_image: dict
	By default all VMs will use the latest Ubuntu LTS release with the following configuration

{"publisher": "Canonical", "offer": "UbuntuServer","sku": "18.04-LTS", "version": "latest"}

You can override any of these options by passing a dict with matching keys here.
For example if you wish to try Ubuntu 19.04 you can pass {"sku": "19.04"} and the publisher,
offer and version will be used from the default.



	bootstrap: bool (optional)
	It is assumed that the VHD will not have Docker installed (or the NVIDIA drivers for GPU instances).
If bootstrap is True these dependencies will be installed on instance start. If you are using
a custom VHD which already has these dependencies set this to False.



	auto_shutdown: bool (optional)
	Shutdown the VM if the Dask process exits. Default True.



	worker_module: str
	The Dask worker module to start on worker VMs.



	n_workers: int
	Number of workers to initialise the cluster with. Defaults to 0.



	worker_module: str
	The Python module to run for the worker. Defaults to distributed.cli.dask_worker



	worker_options: dict
	Params to be passed to the worker class.
See distributed.worker.Worker [https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker] for default worker class.
If you set worker_module then refer to the docstring for the custom worker class.



	scheduler_options: dict
	Params to be passed to the scheduler class.
See distributed.scheduler.Scheduler [https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler].



	docker_image: string (optional)
	The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the Python
environment matches your local environment where AzureVMCluster is being created from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda installed.

By default the daskdev/dask:latest image will be used.



	docker_args: string (optional)
	Extra command line arguments to pass to Docker.



	extra_bootstrap: list[str] (optional)
	Extra commands to be run during the bootstrap phase.



	silence_logs: bool
	Whether or not we should silence logging when setting up the cluster.



	asynchronous: bool
	If this is intended to be used directly within an event loop with
async/await



	securitySecurity or bool, optional
	Configures communication security in this cluster. Can be a security
object, or True. If True, temporary self-signed credentials will
be created automatically. Default is True.



	debug: bool, optional
	More information will be printed when constructing clusters to enable debugging.



	marketplace_plan: dict (optional)
	Plan information dict necessary for creating a virtual machine from Azure Marketplace image or
a custom image sourced from a Marketplace image with a plan. Default is {}.

All three fields “name”, “publisher”, “product” must be passed in the dictionary if set. For e.g.

{"name": "ngc-base-version-21-02-2", "publisher": "nvidia","product": "ngc_azure_17_11"}



	subscription_id: str (optional)
	The ID of the Azure Subscription to create the virtual machines in. If not specified, then
dask-cloudprovider will attempt to use the configured default for the Azure CLI. List your
subscriptions with az account list.









Examples

Minimal example

Create the cluster

>>> from dask_cloudprovider.azure import AzureVMCluster
>>> cluster = AzureVMCluster(resource_group="<resource group>",
...                          vnet="<vnet>",
...                          security_group="<security group>",
...                          n_workers=1)
Creating scheduler instance
Assigned public IP
Network interface ready
Creating VM
Created VM dask-5648cc8b-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Network interface ready
Creating VM
Created VM dask-5648cc8b-worker-e1ebfc0e





Connect a client.

>>> from dask.distributed import Client
>>> client = Client(cluster)





Do some work.

>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5004117488368686





Close the cluster.

>>> client.close()
>>> cluster.close()
Terminated VM dask-5648cc8b-worker-e1ebfc0e
Removed disks for VM dask-5648cc8b-worker-e1ebfc0e
Deleted network interface
Terminated VM dask-5648cc8b-scheduler
Removed disks for VM dask-5648cc8b-scheduler
Deleted network interface
Unassigned public IP





You can also do this all in one go with context managers to ensure the cluster is
created and cleaned up.

>>> with AzureVMCluster(resource_group="<resource group>",
...                     vnet="<vnet>",
...                     security_group="<security group>",
...                     n_workers=1) as cluster:
...     with Client(cluster) as client:
...             print(da.random.random((1000, 1000), chunks=(100, 100)).mean().compute())
Creating scheduler instance
Assigned public IP
Network interface ready
Creating VM
Created VM dask-1e6dac4e-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Network interface ready
Creating VM
Created VM dask-1e6dac4e-worker-c7c4ca23
0.4996427609642539
Terminated VM dask-1e6dac4e-worker-c7c4ca23
Removed disks for VM dask-1e6dac4e-worker-c7c4ca23
Deleted network interface
Terminated VM dask-1e6dac4e-scheduler
Removed disks for VM dask-1e6dac4e-scheduler
Deleted network interface
Unassigned public IP





RAPIDS example

You can also use AzureVMCluster to run a GPU enabled cluster and
leverage the RAPIDS [https://rapids.ai/] accelerated libraries.

>>> cluster = AzureVMCluster(resource_group="<resource group>",
...                          vnet="<vnet>",
...                          security_group="<security group>",
...                          n_workers=1,
...                          vm_size="Standard_NC12s_v3",  # Or any NVIDIA GPU enabled size
...                          docker_image="rapidsai/rapidsai:cuda11.0-runtime-ubuntu18.04-py3.8",
...                          worker_class="dask_cuda.CUDAWorker")
>>> from dask.distributed import Client
>>> client = Client(cluster)





Run some GPU code.

>>> def get_gpu_model():
...     import pynvml
...     pynvml.nvmlInit()
...     return pynvml.nvmlDeviceGetName(pynvml.nvmlDeviceGetHandleByIndex(0))





>>> client.submit(get_gpu_model).result()
b'Tesla V100-PCIE-16GB'





Close the cluster.

>>> client.close()
>>> cluster.close()






	Attributes

	
	asynchronous
	Are we running in the event loop?



	auto_shutdown
	

	bootstrap
	

	command
	

	dashboard_link
	

	docker_image
	

	gpu_instance
	

	loop
	

	name
	

	observed
	

	plan
	

	requested
	

	scheduler_address
	

	scheduler_class
	

	worker_class
	







Methods







	adapt([Adaptive, minimum, maximum, ...])

	Turn on adaptivity



	call_async(f, *args, **kwargs)

	Run a blocking function in a thread as a coroutine.



	from_name(name)

	Create an instance of this class to represent an existing cluster by name.



	get_client()

	Return client for the cluster



	get_logs([cluster, scheduler, workers])

	Return logs for the cluster, scheduler and workers



	get_tags()

	Generate tags to be applied to all resources.



	new_worker_spec()

	Return name and spec for the next worker



	scale([n, memory, cores])

	Scale cluster to n workers



	scale_up([n, memory, cores])

	Scale cluster to n workers



	sync(func, *args[, asynchronous, ...])

	Call func with args synchronously or asynchronously depending on the calling context



	wait_for_workers([n_workers, timeout])

	Blocking call to wait for n workers before continuing












	close

	


	get_cloud_init

	


	logs

	


	render_cloud_init

	


	render_process_cloud_init

	


	scale_down

	












Azure Spot Instance Plugin


	
class dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin(poll_interval_s=1, metadata_url=None, termination_events=None, termination_offset_minutes=0)

	A worker plugin for azure spot instances

This worker plugin will poll azure’s metadata service for preemption notifications.
When a node is preempted, the plugin will attempt to shutdown gracefully all workers
on the node.

This plugin can be used on any worker running on azure spot instances, not just the
ones created by dask-cloudprovider.

For more details on azure spot instances see:
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/scheduled-events


	Parameters

	
	poll_interval_s: int (optional)
	The rate at which the plugin will poll the metadata service in seconds.

Defaults to 1



	metadata_url: str (optional)
	The url of the metadata service to poll.

Defaults to “http://169.254.169.254/metadata/scheduledevents?api-version=2019-08-01”



	termination_events: List[str] (optional)
	The type of events that will trigger the gracefull shutdown

Defaults to ['Preempt', 'Terminate']



	termination_offset_minutes: int (optional)
	Extra offset to apply to the premption date. This may be negative, to start
the gracefull shutdown before the NotBefore date. It can also be positive, to
start the shutdown after the NotBefore date, but this is at your own risk.

Defaults to 0









Examples

Let’s say you have cluster and a client instance.
For example using dask_kubernetes.KubeCluster [https://kubernetes.dask.org/en/latest/kubecluster.html#dask_kubernetes.KubeCluster]

>>> from dask_kubernetes import KubeCluster
>>> from distributed import Client
>>> cluster = KubeCluster()
>>> client = Client(cluster)





You can add the worker plugin using the following:

>>> from dask_cloudprovider.azure import AzurePreemptibleWorkerPlugin
>>> client.register_worker_plugin(AzurePreemptibleWorkerPlugin())





Methods







	setup(worker)

	Run when the plugin is attached to a worker.



	teardown(worker)

	Run when the worker to which the plugin is attached is closed, or when the plugin is removed.



	transition(key, start, finish, **kwargs)

	Throughout the lifecycle of a task (see Worker State [https://distributed.dask.org/en/latest/worker-state.html]), Workers are instructed by the scheduler to compute certain tasks, resulting in transitions in the state of each task.












	poll_status

	






	
setup(worker)

	Run when the plugin is attached to a worker. This happens when the plugin is registered
and attached to existing workers, or when a worker is created after the plugin has been
registered.






	
teardown(worker)

	Run when the worker to which the plugin is attached is closed, or
when the plugin is removed.















            

          

      

      

    

  

    
      
          
            
  
Hetzner







	HetznerCluster([bootstrap, image, location, ...])

	Cluster running on Hetzner cloud vServers.







Overview


Authentication

To authenticate with Hetzner you must first generate a
personal access token [https://www.digitalocean.com/docs/apis-clis/api/create-personal-access-token/].

Then you must put this in your Dask configuration at cloudprovider.hetzner.token. This can be done by
adding the token to your YAML configuration or exporting an environment variable.

# ~/.config/dask/cloudprovider.yaml

cloudprovider:
  hetzner:
    token: "yourtoken"





$ export DASK_CLOUDPROVIDER__HETZNER__TOKEN="yourtoken"






	
class dask_cloudprovider.hetzner.HetznerCluster(bootstrap: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, image: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, location: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, server_type: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, docker_image: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kwargs)

	Cluster running on Hetzner cloud vServers.

VMs in Hetzner are referred to as vServers. This cluster manager constructs a Dask cluster
running on VMs.

When configuring your cluster you may find it useful to install the hcloud tool for querying the
Hetzner API for available options.

https://github.com/hetznercloud/cli


	Parameters

	
	image: str
	The image to use for the host OS. This should be a Ubuntu variant.
You can list available images with hcloud image list|grep Ubuntu.



	location: str
	The Hetzner location to launch you cluster in. A full list can be obtained with hcloud location list.



	server_type: str
	The VM server type. You can get a full list with hcloud server-type list.
The default is cx11 which is vServer with 2GB RAM and 1 vCPU.



	n_workers: int
	Number of workers to initialise the cluster with. Defaults to 0.



	worker_module: str
	The Python module to run for the worker. Defaults to distributed.cli.dask_worker



	worker_options: dict
	Params to be passed to the worker class.
See distributed.worker.Worker [https://distributed.dask.org/en/latest/worker.html#distributed.worker.Worker] for default worker class.
If you set worker_module then refer to the docstring for the custom worker class.



	scheduler_options: dict
	Params to be passed to the scheduler class.
See distributed.scheduler.Scheduler [https://distributed.dask.org/en/latest/scheduling-state.html#distributed.scheduler.Scheduler].



	env_vars: dict
	Environment variables to be passed to the worker.



	extra_bootstrap: list[str] (optional)
	Extra commands to be run during the bootstrap phase.







	Attributes

	
	asynchronous
	Are we running in the event loop?



	auto_shutdown
	

	bootstrap
	

	command
	

	dashboard_link
	

	docker_image
	

	gpu_instance
	

	loop
	

	name
	

	observed
	

	plan
	

	requested
	

	scheduler_address
	

	scheduler_class
	

	worker_class
	







Methods







	adapt([Adaptive, minimum, maximum, ...])

	Turn on adaptivity



	call_async(f, *args, **kwargs)

	Run a blocking function in a thread as a coroutine.



	from_name(name)

	Create an instance of this class to represent an existing cluster by name.



	get_client()

	Return client for the cluster



	get_logs([cluster, scheduler, workers])

	Return logs for the cluster, scheduler and workers



	get_tags()

	Generate tags to be applied to all resources.



	new_worker_spec()

	Return name and spec for the next worker



	scale([n, memory, cores])

	Scale cluster to n workers



	scale_up([n, memory, cores])

	Scale cluster to n workers



	sync(func, *args[, asynchronous, ...])

	Call func with args synchronously or asynchronously depending on the calling context



	wait_for_workers([n_workers, timeout])

	Blocking call to wait for n workers before continuing












	close

	


	get_cloud_init

	


	logs

	


	render_cloud_init

	


	render_process_cloud_init

	


	scale_down

	

















            

          

      

      

    

  

    
      
          
            
  
Troubleshooting

This document contains frequently asked troubleshooting problems.


Unable to connect to scheduler

The most common issue is not being able to connect to the cluster once it has been constructed.

Each cluster manager will construct a Dask scheduler and by default expose it via a public IP address. You must be able
to connect to that address on ports 8786 and 8787 from wherver your Python session is.

If you are unable to connect to this address it is likely that there is something wrong with your network configuration,
for example you may have corporate policies implementing additional firewall rules on your account.

To reduce the chances of this happening it is often simplest to run Dask Cloudprovider from within the cloud you are trying
to use and configure private networking only. See your specific cluster manager docs for info.




Invalid CPU or Memory

When working with FargateCluster or ECSCluster, CPU and memory arguments can only take values from a fixed set of combinations.

So, for example, code like this will result in an error

from dask_cloudprovider.aws import FargateCluster
cluster = FargateCluster(
    image="daskdev/dask:latest",
    worker_cpu=256,
    worker_mem=30720,
    n_workers=2,
    fargate_use_private_ip=False,
    scheduler_timeout="15 minutes"
)
client = Client(cluster)
cluster

# botocore.errorfactory.ClientException:
# An error occurred (ClientException) when calling the RegisterTaskDefinition operation:
# No Fargate configuration exists for given values.





This is because ECS and Fargate task definitions with CPU=256 cannot have as much memory as that code is requesting.

The AWS-accepted set of combinations is documented at
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html.




Requested CPU Configuration Above Limit

When creating a FargateCluster or or ECSCluster, or adding additional workers, you may receive an error response with
“The requested CPU configuration is above your limit”. This means that the scheduler and workers requested and any other
EC2 resources you have running in that region use up more than your current service quota
limit for vCPUs [https://aws.amazon.com/ec2/faqs/#EC2_On-Demand_Instance_limits].

You can adjust the scheduler and/or worker CPUs with the scheduler_cpu and worker_cpu
arguments [https://cloudprovider.dask.org/en/latest/aws.html#elastic-container-service-ecs]. See the “Invalid CPU or Memory”
section in this document for more information.

However, to get the desired cluster configuration you’ll need to request a service limit quota increase.

Go to https://<region>.aws.amazon.com/servicequotas/home/services/ec2/quotas and
request an increase [https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html] for
“Running On-Demand Standard (A, C, D, H, I, M, R, T, Z) instances”.




Pulling private Docker images

For cluster managers like EC2Cluster, AzureVMCluster and GCPCluster Docker images will be pulled onto VMs created on the cloud of your choice.

If you need to pull a private Docker images which requires authentication each VM will need to be configured with credentials. These cluster managers accept
and extra_bootstrap argument where you can provide additional bash commands to be run during startup. This is a good place to log into your Docker registry.

from dask_cloudprovider.azure import AzureVMCluster
cluster = AzureVMCluster(...
                         docker_image="my_private_image:latest",
                         extra_bootstrap=["docker login -u 'username' -p 'password'"])











            

          

      

      

    

  

    
      
          
            
  
Security

Dask Cloudprovider aims to balance ease of use with security best practices. The two are not always compatible so this document aims to outline the compromises and decisions made in this library.


Public Schedulers

For each cluster manager to work correctly it must be able to make a connection to the Dask scheduler on port 8786.
In many cluster managers the default option is to expose the Dask scheduler and dashboard to the internet via a public IP address.
This makes things quick and easy for new users to get up and running, but may pose a security risk long term.

Many organisations have policies which do not allow users to assign public IP addresses or open ports. Our best practices
advice is to use Dask Cloudprovider from within a cloud platform, either from a VM or a managed environment. Then disable public
networking. For example:

>>> import dask.config, dask_cloudprovider
>>> dask.config.set({"cloudprovider.gcp.public_ingress": False})





See each cluster manager for configuration options.




Authentication and encryption

Cluster managers such as dask_cloudprovider.aws.EC2Cluster, dask_cloudprovider.azure.AzureVMCluster,
dask_cloudprovider.gcp.GCPCluster and dask_cloudprovider.digitalocean.DropletCluster enable certificate based authentication
and encryption by default.

When a cluster is launched with any of these cluster managers a set of temporary keys will be generated and distributed to the cluster nodes
via their startup script. All communication between the client, scheduler and workers will then be encrypted and only clients and workers with
valid certificates will be able to connect to the scheduler.

You can also specify your own certificates using the distributed.security.Security [https://distributed.dask.org/en/latest/tls.html#distributed.security.Security] object.

>>> from dask_cloudprovider.gcp import GCPCluster
>>> from dask.distributed import Client
>>> from distributed.security import Security
>>> sec = Security(tls_ca_file='cluster_ca.pem',
...                tls_client_cert='cli_cert.pem',
...                tls_client_key='cli_key.pem',
...                require_encryption=True)
>>> cluster = GCPCluster(n_workers=1, security=sec)
>>> client = Client(cluster)
>>> client
<Client: 'tls://10.142.0.29:8786' processes=0 threads=0, memory=0 B>





You can disable secure connections by setting the security keyword argument to False. This may be desirable when troubleshooting or
when running on a trusted network (entirely inside a VPC for example).







            

          

      

      

    

  

    
      
          
            
  
GPU clusters

Many cloud providers have GPU offerings and so it is possible to launch GPU enabled Dask clusters
with Dask Cloudprovider.

Each cluster manager handles this differently but generally you will need to configure the following settings:


	Configure the hardware to include GPUs. This may be by changing the hardware type or adding accelerators.


	Ensure the OS/Docker image has the NVIDIA drivers. For Docker images it is recommended to use the [RAPIDS images](https://hub.docker.com/r/rapidsai/rapidsai/).


	Set the worker_module config option to dask_cuda.cli.dask_cuda_worker or worker_command option to dask-cuda-worker.




In the following AWS dask_cloudprovider.aws.EC2Cluster example we set the ami to be a Deep Learning AMI with NVIDIA drivers, the docker_image to RAPIDS, the instance_type
to p3.2xlarge which has one NVIDIA Tesla V100 and the worker_module to dask_cuda.cli.dask_cuda_worker.

>>> cluster = EC2Cluster(ami="ami-0c7c7d78f752f8f17",  # Example Deep Learning AMI (Ubuntu 18.04)
                         docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04",
                         instance_type="p3.2xlarge",
                         worker_module="dask_cuda.cli.dask_cuda_worker",
                         bootstrap=False,
                         filesystem_size=120)





See each cluster manager’s example sections for info on starting a GPU cluster.





            

          

      

      

    

  

    
      
          
            
  
Creating custom OS images with Packer

Many cloud providers in Dask Cloudprovider involve creating VMs and installing dependencies on those VMs at boot time.

This can slow down the creation and scaling of clusters, so this page discusses building custom images using Packer [https://www.packer.io/] to speed up cluster creation.

Packer is a utility which boots up a VM on your desired cloud, runs any installation steps and then takes a snapshot of the VM for use as a template for creating
new VMs later. This allows us to run through the installation steps once, and then reuse them when starting Dask components.


Installing Packer

See the official install docs [https://www.packer.io/docs/install].




Packer Overview

To create an image with packer we need to create a JSON config file.

A Packer config file is broken into a couple of sections, builders and provisioners.

A builder configures what type of image you are building (AWS AMI, GCP VMI, etc). It describes the base
image you are building on top of and connection information for Packer to connect to the build instance.

When you run packer build /path/to/config.json a VM (or multiple VMs if you configure more than one) will be
created automatically based on your builders config section.

Once your build VM is up and running the provisioners will be run. These are steps to configure and provision your
machine. In the examples below we are mostly using the shell provisioner which will run commands on the VM to set things
up.

Once your provisioning scripts have completed the VM will automatically stop, a snapshot will be taken and you will be provided
with an ID which you can then use as a template in future runs of dask-cloudprovider.




Image Requirements

Each cluster manager that uses VMs will have specific requirements for the VM image.

The AWS ECSCluster for example requires ECS optimised AMIs [https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html].

The VM cluster managers such as EC2cluster and DropletCluster just require Docker [https://docs.docker.com/engine/install/] to be installed (or NVIDIA Docker [https://github.com/NVIDIA/nvidia-docker] for GPU VM types).




Examples


EC2Cluster with cloud-init

When any of the VMCluster based cluster managers, such as EC2Cluster, lauch a new default VM it uses the Ubuntu base image and installs all dependencies
with cloud-init [https://cloudinit.readthedocs.io/en/latest/].

Instead of doing this every time we could use Packer to do this once, and then reuse that image every time.

Each VMCluster cluster manager has a class method called get_cloud_init which takes the same keyword arguments as creating the object itself, but instead
returns the cloud-init file that would be generated.

from dask_cloudprovider.aws import EC2Cluster

cloud_init_config = EC2Cluster.get_cloud_init(
    # Pass any kwargs here you would normally pass to ``EC2Cluster``
)
print(cloud_init_config)





We should see some output like this.

#cloud-config

packages:
- apt-transport-https
- ca-certificates
- curl
- gnupg-agent
- software-properties-common

# Enable ipv4 forwarding, required on CIS hardened machines
write_files:
- path: /etc/sysctl.d/enabled_ipv4_forwarding.conf
    content: |
    net.ipv4.conf.all.forwarding=1

# create the docker group
groups:
- docker

# Add default auto created user to docker group
system_info:
default_user:
    groups: [docker]

runcmd:

# Install Docker
- curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
- add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
- apt-get update -y
- apt-get install -y docker-ce docker-ce-cli containerd.io
- systemctl start docker
- systemctl enable docker

# Run container
- docker run --net=host  daskdev/dask:latest dask-scheduler --version





We should save this output somewhere for reference later. Let’s refer to it as /path/to/cloud-init-config.yaml.

Next we need a Packer config file to build our image, let’s refer to it as /path/to/config.json.
We will use the official Ubuntu 20.04 image and specify our cloud-init config file in the user_data_file option.

Packer will not necesserily wait for our cloud-init config to finish executing before taking a snapshot, so we need to add a provisioner
that will block until the cloud-init completes.

{
    "builders": [
        {
            "type": "amazon-ebs",
            "region": "eu-west-2",
            "source_ami_filter": {
                "filters": {
                    "virtualization-type": "hvm",
                    "name": "ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*",
                    "root-device-type": "ebs"
                },
                "owners": [
                    "099720109477"
                ],
                "most_recent": true
            },
            "instance_type": "t2.micro",
            "ssh_username": "ubuntu",
            "ami_name": "dask-cloudprovider {{timestamp}}",
            "user_data_file": "/path/to/cloud-init-config.yaml"
        }
    ],
    "provisioners": [
        {
            "type": "shell",
            "inline": [
                "echo 'Waiting for cloud-init'; while [ ! -f /var/lib/cloud/instance/boot-finished ]; do sleep 1; done; echo 'Done'"
            ]
        }
    ]
}





Then we can build our image with packer build /path/to/config.json.

$ packer build /path/to/config.json
amazon-ebs: output will be in this color.

==> amazon-ebs: Prevalidating any provided VPC information
==> amazon-ebs: Prevalidating AMI Name: dask-cloudprovider 1600875672
    amazon-ebs: Found Image ID: ami-062c2b6de9e9c54d3
==> amazon-ebs: Creating temporary keypair: packer_5f6b6c99-46b5-6002-3126-8dcb1696f969
==> amazon-ebs: Creating temporary security group for this instance: packer_5f6b6c9a-bd7d-8bb3-58a8-d983f0e95a96
==> amazon-ebs: Authorizing access to port 22 from [0.0.0.0/0] in the temporary security groups...
==> amazon-ebs: Launching a source AWS instance...
==> amazon-ebs: Adding tags to source instance
    amazon-ebs: Adding tag: "Name": "Packer Builder"
    amazon-ebs: Instance ID: i-0531483be973d60d8
==> amazon-ebs: Waiting for instance (i-0531483be973d60d8) to become ready...
==> amazon-ebs: Using ssh communicator to connect: 18.133.244.42
==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Provisioning with shell script: /var/folders/0l/fmwbqvqn1tq96xf20rlz6xmm0000gp/T/packer-shell512450076
    amazon-ebs: Waiting for cloud-init
    amazon-ebs: Done
==> amazon-ebs: Stopping the source instance...
    amazon-ebs: Stopping instance
==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating AMI dask-cloudprovider 1600875672 from instance i-0531483be973d60d8
    amazon-ebs: AMI: ami-064f8db7634d19647
==> amazon-ebs: Waiting for AMI to become ready...
==> amazon-ebs: Terminating the source AWS instance...
==> amazon-ebs: Cleaning up any extra volumes...
==> amazon-ebs: No volumes to clean up, skipping
==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...
Build 'amazon-ebs' finished after 4 minutes 5 seconds.

==> Wait completed after 4 minutes 5 seconds

==> Builds finished. The artifacts of successful builds are:
--> amazon-ebs: AMIs were created:
eu-west-2: ami-064f8db7634d19647





Then to use our new image we can create an EC2Cluster specifying the AMI and disabling the automatic bootstrapping.

from dask.distributed import Client
from dask_cloudprovider.aws import EC2Cluster

cluster = EC2Cluster(
    ami="ami-064f8db7634d19647",  # AMI ID provided by Packer
    bootstrap=False
)
cluster.scale(2)

client = Client(cluster)
# Your cluster is ready to use








EC2Cluster with RAPIDS

To launch RAPIDS [https://rapids.ai/] on AWS EC2 we can select a GPU instance type, choose the official Deep Learning AMIs that Amazon provides and run the official RAPIDS Docker image.

from dask_cloudprovider.aws import EC2Cluster

cluster = EC2Cluster(
    ami="ami-0c7c7d78f752f8f17",  # Deep Learning AMI (this ID varies by region so find yours in the AWS Console)
    docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04-py3.8",
    instance_type="p3.2xlarge",
    bootstrap=False,  # Docker is already installed on the Deep Learning AMI
    filesystem_size=120,
)
cluster.scale(2)





However every time a VM is created by EC2Cluster the RAPIDS Docker image will need to be pulled from Docker Hub.
The result is that the above snippet can take ~20 minutes to run, so let’s create our own AMI which already has the RAPIDS image pulled.

In our builders section we will specify we want to build on top of the latest Deep Learning AMI by specifying
"Deep Learning AMI (Ubuntu 18.04) Version *" to list all versions and "most_recent": true to use the most recent.

We also restrict the owners to 898082745236 which is the ID for the official image channel.

The official image already has the NVIDIA drivers and NVIDIA Docker runtime installed so the only step we need to do is to
pull the RAPIDS Docker image. That way when a scheduler or worker VM is created the image will already be available on the machine.

{
    "builders": [
        {
            "type": "amazon-ebs",
            "region": "eu-west-2",
            "source_ami_filter": {
                "filters": {
                    "virtualization-type": "hvm",
                    "name": "Deep Learning AMI (Ubuntu 18.04) Version *",
                    "root-device-type": "ebs"
                },
                "owners": [
                    "898082745236"
                ],
                "most_recent": true
            },
            "instance_type": "p3.2xlarge",
            "ssh_username": "ubuntu",
            "ami_name": "dask-cloudprovider-rapids {{timestamp}}"
        }
    ],
    "provisioners": [
        {
            "type": "shell",
            "inline": [
                "docker pull rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04-py3.8"
            ]
        }
    ]
}





Then we can build our image with packer build /path/to/config.json.

$ packer build /path/to/config.json
==> amazon-ebs: Prevalidating any provided VPC information
==> amazon-ebs: Prevalidating AMI Name: dask-cloudprovider-gpu 1600868638
    amazon-ebs: Found Image ID: ami-0c7c7d78f752f8f17
==> amazon-ebs: Creating temporary keypair: packer_5f6b511e-d3a3-c607-559f-d466560cd23b
==> amazon-ebs: Creating temporary security group for this instance: packer_5f6b511f-8f62-cf98-ca54-5771f1423d2d
==> amazon-ebs: Authorizing access to port 22 from [0.0.0.0/0] in the temporary security groups...
==> amazon-ebs: Launching a source AWS instance...
==> amazon-ebs: Adding tags to source instance
    amazon-ebs: Adding tag: "Name": "Packer Builder"
    amazon-ebs: Instance ID: i-077f54ed4ae6bcc66
==> amazon-ebs: Waiting for instance (i-077f54ed4ae6bcc66) to become ready...
==> amazon-ebs: Using ssh communicator to connect: 52.56.96.165
==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Provisioning with shell script: /var/folders/0l/fmwbqvqn1tq96xf20rlz6xmm0000gp/T/packer-shell376445833
    amazon-ebs: Waiting for cloud-init
    amazon-ebs: Bootstrap complete
==> amazon-ebs: Stopping the source instance...
    amazon-ebs: Stopping instance
==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating AMI dask-cloudprovider-gpu 1600868638 from instance i-077f54ed4ae6bcc66
    amazon-ebs: AMI: ami-04e5539cb82859e69
==> amazon-ebs: Waiting for AMI to become ready...
==> amazon-ebs: Terminating the source AWS instance...
==> amazon-ebs: Cleaning up any extra volumes...
==> amazon-ebs: No volumes to clean up, skipping
==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...
Build 'amazon-ebs' finished after 20 minutes 35 seconds.





It took over 20 minutes to build this image, but now that we’ve done it once we can reuse the image in our RAPIDS powered Dask clusters.

We can then run our code snippet again but this time it will take less than 5 minutes to get a running cluster.

from dask.distributed import Client
from dask_cloudprovider.aws import EC2Cluster

cluster = EC2Cluster(
    ami="ami-04e5539cb82859e69",  # AMI ID provided by Packer
    docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04-py3.8",
    instance_type="p3.2xlarge",
    bootstrap=False,
    filesystem_size=120,
)
cluster.scale(2)

client = Client(cluster)
# Your cluster is ready to use













            

          

      

      

    

  

    
      
          
            
  
Testing

Tests in dask-cloudprovider and written and run using pytest.

To set up your testing environment run:

pip install -r requirements_test.txt





To run tests run pytest from the root directory

pytest





You may notice that many tests will be skipped. This is because those tests create external resources on cloud providers. You can set those tests to run with the
--create-external-resources flag.


Warning

Running tests that create external resources are slow and will cost a small amount of credit on each cloud provider.



pytest -rs --create-external-resources





It is also helpful to set the -rs flag here because tests may also skip if you do not have appropriate credentials to create those external resources.
If this is the case the skip reason will contain instructions on how to set up those credentials. For example

SKIPPED [1] dask_cloudprovider/azure/tests/test_azurevm.py:49:
    You must configure your Azure resource group and vnet to run this test.

        $ export DASK_CLOUDPROVIDER__AZURE__LOCATION="<LOCATION>"
        $ export DASK_CLOUDPROVIDER__AZURE__AZUREVM__RESOURCE_GROUP="<RESOURCE GROUP>"
        $ export DASK_CLOUDPROVIDER__AZURE__AZUREVM__VNET="<VNET>"
        $ export DASK_CLOUDPROVIDER__AZURE__AZUREVM__SECURITY_GROUP="<SECUROTY GROUP>"









            

          

      

      

    

  

    
      
          
            
  
Releasing

Releases are published automatically when a tag is pushed to GitHub.

# Set next version number
export RELEASE=x.x.x

# Create tags
git commit --allow-empty -m "Release $RELEASE"
git tag -a $RELEASE -m "Version $RELEASE"

# Push
git push upstream --tags









            

          

      

      

    

  

    
      
          
            

Index



 A
 | D
 | E
 | F
 | G
 | H
 | S
 | T
 


A


  	
      	AzurePreemptibleWorkerPlugin (class in dask_cloudprovider.azure)


  

  	
      	AzureVMCluster (class in dask_cloudprovider.azure)


  





D


  	
      	DropletCluster (class in dask_cloudprovider.digitalocean)


  





E


  	
      	EC2Cluster (class in dask_cloudprovider.aws)


  

  	
      	ECSCluster (class in dask_cloudprovider.aws)


  





F


  	
      	FargateCluster (class in dask_cloudprovider.aws)


  





G


  	
      	GCPCluster (class in dask_cloudprovider.gcp)


  





H


  	
      	HetznerCluster (class in dask_cloudprovider.hetzner)


  





S


  	
      	setup() (dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin method)


  





T


  	
      	teardown() (dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin method)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Dask Cloud Provider
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





