Overview

1. **Installation**
 1.1 Pip .. 3
 1.2 Conda .. 3

2. **Configuration**
 2.1 Authentication 5
 2.2 Cluster config 5

3. **Amazon Web Services (AWS)**
 3.1 Overview ... 7
 3.2 Elastic Compute Cloud (EC2) 8
 3.3 Elastic Container Service (ECS) 12
 3.4 Fargate .. 17

4. **DigitalOcean**
 4.1 Overview .. 21
 4.2 Droplet .. 21

5. **Google Cloud Platform**
 5.1 Overview .. 25
 5.2 Google Cloud VMs 26

6. **Microsoft Azure**
 6.1 Overview .. 31
 6.2 AzureVM ... 33
 6.3 Azure Spot Instance Plugin 37

7. **Hetzner**
 7.1 Overview .. 39

8. **Troubleshooting**
 8.1 Unable to connect to scheduler 43
 8.2 Invalid CPU or Memory 43
 8.3 Requested CPU Configuration Above Limit 44

9. **Security**
 9.1 Public Schedulers 45
 9.2 Authentication and encryption 45
Native Cloud integration for Dask.

This package provides classes for constructing and managing ephemeral Dask clusters on various cloud platforms. To use a cloud provider cluster manager you can import it and instantiate it. Instantiating the class will result in cloud resources being created for you.

```python
from dask_cloudprovider.aws import FargateCluster
c = FargateCluster()
```

You can then construct a Dask client with that cluster object to use the cluster.

```python
from dask.distributed import Client
c = Client(c)
```

Once you are connected to the cluster you can go ahead and use Dask and all computation will take place on your cloud resource.

Once you are finished be sure to close out your cluster to shut down any cloud resources you have and end any charges.

```python
c.close()
```

Warning: Cluster managers will attempt to automatically remove hanging cloud resources on garbage collection if the cluster object is destroyed without calling `cluster.close()`, however this is not guaranteed.

To implicitly close your cluster when you are done with it you can optionally construct the cluster manager via a context manager. However this will result in the creation and destruction of the whole cluster whenever you run this code.

```python
from dask_cloudprovider.aws import FargateCluster
from dask.distributed import Client

with FargateCluster(...) as c:
    with Client(c) as c:
        # Do some Dask things
```
CHAPTER 1

Installation

1.1 Pip

```
$ pip install dask-cloudprovider[all]
```

You can also restrict your install to just a specific cloud provider by giving their name instead of `all`.

```
$ pip install dask-cloudprovider[aws]  # or
$ pip install dask-cloudprovider[azure]  # or
$ pip install dask-cloudprovider[azureml]  # or
$ pip install dask-cloudprovider[digitalocean]  # or
$ pip install dask-cloudprovider[gcp]
```

1.2 Conda

```
$ conda install -c conda-forge dask-cloudprovider
```
Each cluster manager in Dask Cloudprovider will require some configuration specific to the cloud services you wish to use. Many config options will have sensible defaults and often you can create a cluster with just your authentication credentials configured.

2.1 Authentication

All cluster managers assume you have already configured your credentials for the cloud you are using.

For AWS this would mean storing your access key and secret key in ~/.aws/credentials. The AWS CLI can create this for you by running the command aws configure.

See each cluster manager for specific details.

Warning: Most cluster managers also allow passing credentials as keyword arguments, although this would result in credentials being stored in code and is not advised.

2.2 Cluster config

Configuration can be passed to a cluster manager via keyword arguments, YAML config or environment variables.

For example the FargateCluster manager for AWS ECS takes a scheduler_mem configuration option to set how much memory to give the scheduler in megabytes. This can be configured in the following ways.

```python
from dask_cloudprovider.aws import FargateCluster

cluster = FargateCluster(
    scheduler_mem=8192
)
```
~/.config/dask/cloudprovider.yaml

```yaml
cloudprovider:
  ecs:
    scheduler_mem: 8192
```

```bash
$ export DASK_CLOUDPROVIDER__ECS__SCHEDULER_MEM=8192
```

See each cluster manager and the Dask configuration docs for more information.
Amazon Web Services (AWS)

3.1 Overview

3.1.1 Authentication

In order to create clusters on AWS you need to set your access key, secret key and region. The simplest way is to use the `aws` command line tool.

```bash
$ pip install awscli
$ aws configure
```

3.1.2 Credentials

In order for your Dask workers to be able to connect to other AWS resources such as S3 they will need credentials. This can be done by attaching IAM roles to individual resources or by passing credentials as environment variables. See each cluster manager docstring for more information.
3.2 Elastic Compute Cloud (EC2)

`class dask_cloudprovider.aws.EC2Cluster(region=None, availability_zone=None, bootstrap=None, auto_shutdown=None, ami=None, instance_type=None, vpc=None, subnet_id=None, security_groups=None, filesystem_size=None, key_name=None, iam_instance_profile=None, docker_image=None, debug=False, **kwargs)`

Deploy a Dask cluster using EC2.

This creates a Dask scheduler and workers on EC2 instances.

All instances will run a single configurable Docker container which should contain a valid Python environment with Dask and any other dependencies.

All optional parameters can also be configured in a `cloudprovider.yaml` file in your Dask configuration directory or via environment variables.

For example `ami` can be set via `DASK_CLOUDPROVIDER__EC2__AMI`.

See https://docs.dask.org/en/latest/configuration.html for more info.

Parameters

- **region:** string (optional)

 The region to start your clusters. By default this will be detected from your config.

- **availability_zone:** string or List(string) (optional)

 The availability zone to start your clusters. By default AWS will select the AZ with most free capacity. If you specify more than one then scheduler and worker VMs will be randomly assigned to one of your chosen AZs.

- **bootstrap:** bool (optional)

 It is assumed that the `ami` will not have Docker installed (or the NVIDIA drivers for GPU instances). If `bootstrap` is True these dependencies will be installed on instance start. If you are using a custom AMI which already has these dependencies set this to False.

- **worker_command:** string (optional)

 The command workers should run when starting. By default this will be "dask-worker" unless `instance_type` is a GPU instance in which case `dask-cuda-worker` will be used.

- **ami:** string (optional)

 The base OS AMI to use for scheduler and workers.

 This must be a Debian flavour distribution. By default this will be the latest official Ubuntu 20.04 LTS release from canonical.

 If the AMI does not include Docker it will be installed at runtime. If the `instance_type` is a GPU instance the NVIDIA drivers and Docker GPU runtime will be installed at runtime.

- **instance_type:** string (optional)

 A valid EC2 instance type. This will determine the resources available to your workers.

 By default will use `t2.micro`.

- **vpc:** string (optional)

 The VPC ID in which to launch the instances.

 Will detect and use the default VPC if not specified.
subnet_id: string (optional) The Subnet ID in which to launch the instances.

Will use all subnets for the VPC if not specified.

security_groups: List(string) (optional) The security group ID that will be attached to the workers.

Must allow all traffic between instances in the security group and ports 8786 and 8787 between the scheduler instance and wherever you are calling EC2Cluster from.

By default a Dask security group will be created with ports 8786 and 8787 exposed to the internet.

filesystem_size: int (optional) The instance filesystem size in GB.

Defaults to 40.

key_name: str (optional) The SSH key name to assign to all instances created by the cluster manager. You can list your existing key pair names with `aws ec2 describe-key-pairs --query 'KeyPairs[*].KeyName' --output text`.

NOTE: You will need to ensure your security group allows access on port 22. If `security_groups` is not set the default group will not contain this rule and you will need to add it manually.

iam_instance_profile: dict (optional) An IAM profile to assign to VMs. This can be used for allowing access to other AWS resources such as S3. See https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html.

n_workers: int Number of workers to initialise the cluster with. Defaults to 0.

worker_module: str The Python module to run for the worker. Defaults to `distributed.cli.dask_worker`

worker_options: dict Params to be passed to the worker class. See `distributed.worker.Worker` for default worker class. If you set `worker_module` then refer to the docstring for the custom worker class.

scheduler_options: dict Params to be passed to the scheduler class. See `distributed.scheduler.Scheduler`.

docker_image: string (optional) The Docker image to run on all instances.

This image must have a valid Python environment and have dask installed in order for the `dask-scheduler` and `dask-worker` commands to be available. It is recommended the Python environment matches your local environment where EC2Cluster is being created from.

For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda installed.

By default the `daskdev/dask:latest` image will be used.

docker_args: string (optional) Extra command line arguments to pass to Docker.

env_vars: dict (optional) Environment variables to be passed to the worker.

silence_logs: bool Whether or not we should silence logging when setting up the cluster.

asynchronous: bool If this is intended to be used directly within an event loop with async/await
security [Security or bool, optional] Configures communication security in this cluster. Can be a security object, or True. If True, temporary self-signed credentials will be created automatically. Default is True.

deploy: bool, optional More information will be printed when constructing clusters to enable debugging.

Notes

Resources created

<table>
<thead>
<tr>
<th>Resource</th>
<th>Name</th>
<th>Purpose</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2 Instance</td>
<td>dask-scheduler-{cluster uuid}</td>
<td>Dask Scheduler</td>
<td>EC2 Pricing</td>
</tr>
<tr>
<td>EC2 Instance</td>
<td>dask-worker-{cluster uuid}-{worker uuid}</td>
<td>Dask Workers</td>
<td>EC2 Pricing</td>
</tr>
</tbody>
</table>

Credentials

In order for Dask workers to access AWS resources such as S3 they will need credentials.

The best practice way of doing this is to pass an IAM role to be used by workers. See the `iam_instance_profile` keyword for more information.

Alternatively you could read in your local credentials created with `aws configure` and pass them along as environment variables. Here is a small example to help you do that.

```python
>>> def get_aws_credentials():
...     parser = configparser.RawConfigParser()
...     parser.read(os.path.expanduser('~/.aws/config'))
...     config = parser.items('default')
...     parser.read(os.path.expanduser('~/.aws/credentials'))
...     credentials = parser.items('default')
...     all_credentials = {key.upper(): value for key, value in [*config, ...
...                                                                     \*credentials]}
...     with contextlib.suppress(KeyError):
...         all_credentials['AWS_REGION'] = all_credentials.pop("REGION")
...     return all_credentials

```

Manual cleanup

If for some reason the cluster manager is terminated without being able to perform cleanup the default behaviour of EC2Cluster is for the scheduler and workers to time out. This will result in the host VMs shutting down. This cluster manager also creates instances with the terminate on shutdown setting so all resources should be removed automatically.

If for some reason you chose to override those settings and disable auto cleanup you can destroy resources with the following CLI command.

```bash
export CLUSTER_ID="cluster id printed during creation"
aws ec2 describe-instances
   --filters "Name=tag:Dask Cluster,Values=${CLUSTER_ID}" \
   --query "Reservations[0].Instances[0].[InstanceId]" \
   --output text | xargs aws ec2 terminate-instances --instance-ids
```

Enable SSH for debugging
```python
>>> from dask_cloudprovider.aws import EC2Cluster
>>> cluster = EC2Cluster(key_name="myawesomekey",  # Security group which allows ports 22, 8786, 8787 and all internal traffic
    security_groups=["sg-aabbcc112233"])

# You can now SSH to an instance with ssh ubuntu@public_ip
>>> cluster.close()
```

Attributes
- asynchronous
- auto_shutdown
- bootstrap
- command
- dashboard_link
- docker_image
- gpu_instance
- name
- observed
- plan
- requested
- scheduler_address
- scheduler_class
- worker_class

Methods
- `adapt(*args[, minimum, maximum])` Turn on adaptivity
- `call_async(f,*args,**kwargs)` Run a blocking function in a thread as a coroutine.
- `from_name(name)` Create an instance of this class to represent an existing cluster by name.
- `get_logs([cluster, scheduler, workers])` Return logs for the cluster, scheduler and workers
- `get_tags()` Generate tags to be applied to all resources.
- `new_worker_spec()` Return name and spec for the next worker
- `scale(n[, memory, cores])` Scale cluster to n workers
- `scale_up([n, memory, cores])` Scale cluster to n workers
3.3 Elastic Container Service (ECS)

class dask_cloudprovider.aws.ECSCluster (fargate_scheduler=False, fargate_workers=False, image=None, scheduler_cpu=None, scheduler_mem=None, scheduler_timeout=None, scheduler_extra_args=None, scheduler_task_kwargs=None, worker_cpu=None, worker_mem=None, worker_gpu=None, worker_extra_args=None, worker_task_kwargs=None, n_workers=None, cluster_arn=None, cluster_name_template=None, execution_role_arn=None, cluster_name_template=None, execution_role_arn=None, task_role_arn=None, task_role_policies=None, cloudwatch_logs_group=None, cloudwatch_logs_stream_prefix=None, cloudwatch_logs_default_retention=None, vpc=None, subnets=None, security_groups=None, environment=None, tags=None, find_address_timeout=None, skip_cleanup=None, aws_access_key_id=None, aws_secret_access_key=None, region_name=None, platform_version=None, fargate_use_private_ip=False, mount_points=None, volumes=None, mount_volumes_on_scheduler=False, **kwargs)

Deploy a Dask cluster using ECS

This creates a dask scheduler and workers on an existing ECS cluster.

All the other required resources such as roles, task definitions, tasks, etc will be created automatically like in FargateCluster.

Parameters

-fargate_scheduler: bool (optional) Select whether or not to use fargate for the scheduler.

Defaults to False. You must provide an existing cluster.

-fargate_workers: bool (optional) Select whether or not to use fargate for the workers.

Defaults to False. You must provide an existing cluster.

-image: str (optional) The docker image to use for the scheduler and worker tasks.

Defaults to daskdev/dask:latest or rapidsai/rapidsai:latest if worker_gpu is set.
scheduler_cpu: int (optional) The amount of CPU to request for the scheduler in milli-cpu (1/1024).
 Defaults to 1024 (one vCPU). See the troubleshooting guide for information on the valid values for this argument.

scheduler_mem: int (optional) The amount of memory to request for the scheduler in MB.
 Defaults to 4096 (4GB). See the troubleshooting guide for information on the valid values for this argument.

scheduler_timeout: str (optional) The scheduler task will exit after this amount of time if there are no clients connected.
 Defaults to 5 minutes.

scheduler_extra_args: List[str] (optional) Any extra command line arguments to pass to dask-scheduler, e.g. ["--tls-cert", "/path/to/cert.pem"]
 Defaults to None, no extra command line arguments.

scheduler_task_kwargs: dict (optional) Additional keyword arguments for the scheduler ECS task.

worker_cpu: int (optional) The amount of CPU to request for worker tasks in milli-cpu (1/1024).
 Defaults to 4096 (four vCPUs). See the troubleshooting guide for information on the valid values for this argument.

worker_mem: int (optional) The amount of memory to request for worker tasks in MB.
 Defaults to 16384 (16GB). See the troubleshooting guide for information on the valid values for this argument.

worker_gpu: int (optional) The number of GPUs to expose to the worker.
 To provide GPUs to workers you need to use a GPU ready docker image that has dask-cuda installed and GPU nodes available in your ECS cluster. Fargate is not supported at this time.
 Defaults to None, no GPUs.

worker_extra_args: List[str] (optional) Any extra command line arguments to pass to dask-worker, e.g. ["--tls-cert", "/path/to/cert.pem"]
 Defaults to None, no extra command line arguments.

worker_task_kwargs: dict (optional) Additional keyword arguments for the workers ECS task.

n_workers: int (optional) Number of workers to start on cluster creation.
 Defaults to None.

cluster_arn: str (optional if fargate is true) The ARN of an existing ECS cluster to use for launching tasks.
 Defaults to None which results in a new cluster being created for you.

cluster_name_template: str (optional) A template to use for the cluster name if cluster_arn is set to None.
 Defaults to 'dask-{uuid}'
execution_role_arn: str (optional) The ARN of an existing IAM role to use for ECS execution.

This ARN must have sts:AssumeRole allowed for ecs-tasks.amazonaws.com and allow the following permissions:

- ecr:GetAuthorizationToken
- ecr:BatchCheckLayerAvailability
- ecr:GetDownloadUrlForLayer
- ecr:GetRepositoryPolicy
- ecr:DescribeRepositories
- ecr:ListImages
- ecr:DescribeImages
- ecr:BatchGetImage
- logs:*
- ec2:AuthorizeSecurityGroupIngress
- ec2:Describe*
- elasticloadbalancing:DeregisterInstancesFromLoadBalancer
- elasticloadbalancing:DeregisterTargets
- elasticloadbalancing:Describe*
- elasticloadbalancing:RegisterInstancesWithLoadBalancer
- elasticloadbalancing:RegisterTargets

Defaults to None (one will be created for you).

task_role_arn: str (optional) The ARN for an existing IAM role for tasks to assume. This defines which AWS resources the dask workers can access directly. Useful if you need to read from S3 or a database without passing credentials around.

Defaults to None (one will be created with S3 read permission only).

task_role_policies: List[str] (optional) If you do not specify a task_role_arn you may want to list some IAM Policy ARNs to be attached to the role that will be created for you.

E.g. if you need your workers to read from S3 you could add arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess.

Default None (no policies will be attached to the role)

cloudwatch_logs_group: str (optional) The name of an existing cloudwatch log group to place logs into.

Default None (one will be created called dask-ecs)

cloudwatch_logs_stream_prefix: str (optional) Prefix for log streams.

Defaults to the cluster name.

cloudwatch_logs_default_retention: int (optional) Retention for logs in days. For use when log group is auto created.

Defaults to 30.
vpc: str (optional) The ID of the VPC you wish to launch your cluster in.

Defaults to None (your default VPC will be used).

subnets: List[str] (optional) A list of subnets to use when running your task.

Defaults to None. (all subnets available in your VPC will be used)

security_groups: List[str] (optional) A list of security group IDs to use when launching tasks.

Defaults to None (one will be created which allows all traffic between tasks and access to ports 8786 and 8787 from anywhere).

environment: dict (optional) Extra environment variables to pass to the scheduler and worker tasks.

Useful for setting EXTRA_APT_PACKAGES, EXTRA_CONDA_PACKAGES and `EXTRA_PIP_PACKAGES if you’re using the default image.

Defaults to None.

tags: dict (optional) Tags to apply to all resources created automatically.

Defaults to None. Tags will always include {"createdBy": "dask-cloudprovider"}

find_address_timeout: int Configurable timeout in seconds for finding the task IP from the cloudwatch logs.

Defaults to 60 seconds.

skip_cleanup: bool (optional) Skip cleaning up of stale resources. Useful if you have lots of resources and this operation takes a while.

Default False.

platform_version: str (optional) Version of the AWS Fargate platform to use, e.g. “1.4.0” or “LATEST”. This setting has no effect for the EC2 launch type.

Defaults to None

fargate_use_private_ip: bool (optional) Whether to use a private IP (if True) or public IP (if False) with Fargate.

Default False.

mount_points: list (optional) List of mount points as documented here: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html

Default None.

volumes: list (optional) List of volumes as documented here: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html

Default None.

mount_volumes_on_scheduler: bool (optional) Whether to also mount volumes in the scheduler task. Any volumes and mount points specified will always be mounted in worker tasks. This setting controls whether volumes are also mounted in the scheduler task.

Default False.

**kwargs: dict Additional keyword arguments to pass to SpecCluster.
Examples

```python
>>> from dask_cloudprovider.aws import ECSCluster
>>> cluster = ECSCluster(cluster_arn="arn:aws:ecs:<region>:<acctid>:cluster/<clustername>"
)
```

There is also support in ECSCluster for GPU aware Dask clusters. To do this you need to create an ECS cluster with GPU capable instances (from the g3, p3 or p3dn families) and specify the number of GPUs each worker task should have.

```python
>>> from dask_cloudprovider.aws import ECSCluster
>>> cluster = ECSCluster(
...    cluster_arn="arn:aws:ecs:<region>:<acctid>:cluster/<gpuclustername>",
...    worker_gpu=1)
```

By setting the `worker_gpu` option to something other than `None` will cause the cluster to run `dask-cuda-worker` as the worker startup command. Setting this option will also change the default Docker image to `rapidsai/rapidsai:latest`, if you’re using a custom image you must ensure the NVIDIA CUDA toolkit is installed with a version that matches the host machine along with `dask-cuda`.

Attributes

- `asynchronous`
- `dashboard_link`
- `name`
- `observed`
- `plan`
- `requested`
- `scheduler_address`
- `tags`

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adapt(*args[, minimum, maximum])</code></td>
<td>Turn on adaptivity</td>
</tr>
<tr>
<td><code>from_name(name)</code></td>
<td>Create an instance of this class to represent an existing cluster by name.</td>
</tr>
<tr>
<td><code>get_logs([cluster, scheduler, workers])</code></td>
<td>Return logs for the cluster, scheduler and workers</td>
</tr>
<tr>
<td><code>new_worker_spec()</code></td>
<td>Return name and spec for the next worker</td>
</tr>
<tr>
<td><code>scale([n, memory, cores])</code></td>
<td>Scale cluster to n workers</td>
</tr>
<tr>
<td><code>scale_up([n, memory, cores])</code></td>
<td>Scale cluster to n workers</td>
</tr>
<tr>
<td><code>close</code></td>
<td></td>
</tr>
<tr>
<td><code>logs</code></td>
<td></td>
</tr>
<tr>
<td><code>scale_down</code></td>
<td></td>
</tr>
<tr>
<td><code>sync</code></td>
<td></td>
</tr>
</tbody>
</table>
3.4 Fargate

class dask_cloudprovider.aws.FargateCluster(**kwargs)
 Deploy a Dask cluster using Fargate on ECS

 This creates a dask scheduler and workers on a Fargate powered ECS cluster. If you do not configure a cluster
 one will be created for you with sensible defaults.

 Parameters

 kwargs: dict Keyword arguments to be passed to ECSCluster.

 Notes

 IAM Permissions

 To create a FargateCluster the cluster manager will need to various AWS resources ranging from IAM
 roles to VPCs to ECS tasks. Depending on your use case you may want the cluster to create all of these for you,
 or you may wish to specify them youself ahead of time.

 Here is the full minimal IAM policy that you need to create the whole cluster:

   ```json
   {
       "Statement": [
           {
               "Action": [
                   "ec2:AuthorizeSecurityGroupIngress",
                   "ec2:CreateSecurityGroup",
                   "ec2:CreateTags",
                   "ec2:CreateNetworkInterfaces",
                   "ec2:DescribeSecurityGroups",
                   "ec2:DescribeSubnets",
                   "ec2:DescribeVpcs",
                   "ec2:DeleteSecurityGroup",
                   "ecs:CreateCluster",
                   "ecs:DescribeTasks",
                   "ecs:ListAccountSettings",
                   "ecs:RegisterTaskDefinition",
                   "ecs:RunTask",
                   "ecs:StopTask",
                   "ecs:ListClusters",
                   "ecs:DescribeClusters",
                   "ecs:DeleteCluster",
                   "ecs:ListTaskDefinitions",
                   "ecs:DescribeTaskDefinition",
                   "ecs:DeregisterTaskDefinition",
                   "iam:AttachRolePolicy",
                   "iam:CreateRole",
                   "iam:TagRole",
                   "iam:PassRole",
                   "iam:DeleteRole",
                   "iam:ListRoles",
                   "iam:ListRoleTags",
                   "iam:ListAttachedRolePolicies",
                   "iam:DetachRolePolicy",
                   "logs:DescribeLogGroups",
                   "logs:GetLogEvents",
               ]
           }
       ]
   }
   
   (continues on next page)
If you specify all of the resources yourself you will need a minimal policy of:

```json
{
 "Statement": [
 {
 "Action": [
 "ec2:CreateTags",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ecs:DescribeTasks",
 "ecs:ListAccountSettings",
 "ecs:RegisterTaskDefinition",
 "ecs:RunTask",
 "ecs:StopTask",
 "ecs:ListClusters",
 "ecs:DescribeClusters",
 "ecs:ListTaskDefinitions",
 "ecs:DescribeTaskDefinition",
 "ecs:DescribeTaskDefinition",
 "iam:ListRoles",
 "iam:ListRoleTags",
 "logs:DescribeLogGroups",
 "logs:GetLogEvents"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
],
 "Version": "2012-10-17"
}
```

Examples

The `FargateCluster` will create a new Fargate ECS cluster by default along with all the IAM roles, security groups, and so on that it needs to function.

```python
>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster()
```
Note that in many cases you will want to specify a custom Docker image to `FargateCluster` so that Dask has the packages it needs to execute your workflow.

```python
>>> from dask_cloudprovider.aws import FargateCluster
>>> cluster = FargateCluster(image="<hub-user>/<repo-name>[:<tag>]")
```

One strategy to ensure that package versions match between your custom environment and the Docker container is to create your environment from an `environment.yml` file, export the exact package list for that environment using `conda list --export > package-list.txt`, and then use the pinned package versions contained in `package-list.txt` in your Dockerfile. You could use the default Dask Dockerfile as a template and simply add your pinned additional packages.

**Attributes**
- asynchronous
- dashboard_link
- name
- observed
- plan
- requested
- scheduler_address
- tags

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adapt(*args[, minimum, maximum])</code></td>
<td>Turn on adaptivity</td>
</tr>
<tr>
<td><code>from_name(name)</code></td>
<td>Create an instance of this class to represent an existing cluster by name.</td>
</tr>
<tr>
<td><code>get_logs([cluster, scheduler, workers])</code></td>
<td>Return logs for the cluster, scheduler and workers</td>
</tr>
<tr>
<td><code>new_worker_spec()</code></td>
<td>Return name and spec for the next worker</td>
</tr>
<tr>
<td><code>scale(n, memory, cores)</code>)</td>
<td>Scale cluster to n workers</td>
</tr>
<tr>
<td><code>scale_up(n, memory, cores)</code></td>
<td>Scale cluster to n workers</td>
</tr>
</tbody>
</table>

### 3.4. Fargate
DigitalOcean

4.1 Overview

4.1.1 Authentication

To authenticate with DigitalOcean you must first generate a personal access token.

Then you must put this in your Dask configuration at `cloudprovider.digitalocean.token`. This can be done by adding the token to your YAML configuration or exporting an environment variable.

```yaml
~/.config/dask/cloudprovider.yaml
cloudprovider:
 digitalocean:
 token: "yourtoken"

$ export DASK_CLOUDPROVIDER__DIGITALOCEAN__TOKEN="yourtoken"
```

4.2 Droplet

```python
class dask_cloudprovider.digitalocean.DropletCluster (region: str = None, size: str = None, image: str = None, debug: bool = False, **kwargs)
```

Cluster running on Digital Ocean droplets.

VMs in DigitalOcean (DO) are referred to as droplets. This cluster manager constructs a Dask cluster running on VMs.
When configuring your cluster you may find it useful to install the doctl tool for querying the DO API for available options.

https://www.digitalocean.com/docs/apis-clis/doctl/how-to/install/

**Parameters**

- **region**: str  The DO region to launch you cluster in. A full list can be obtained with doctl compute region list.
- **size**: str  The VM size slug. You can get a full list with doctl compute size list. The default is s-1vcpu-1gb which is 1GB RAM and 1 vCPU
- **image**: str  The image ID to use for the host OS. This should be a Ubuntu variant. You can list available images with doctl compute image list --public | grep ubuntu.*x64.
- **worker_module**: str  The Dask worker module to start on worker VMs.
- **n_workers**: int  Number of workers to initialise the cluster with. Defaults to 0.
- **worker_module**: str  The Python module to run for the worker. Defaults to distributed.cli.dask_worker
- **worker_options**: dict  Params to be passed to the worker class. See distributed.worker.Worker for default worker class. If you set worker_module then refer to the docstring for the custom worker class.
- **scheduler_options**: dict  Params to be passed to the scheduler class. See distributed.scheduler.Scheduler.
- **docker_image**: string (optional)  The Docker image to run on all instances.
  
  This image must have a valid Python environment and have dask installed in order for the dask-scheduler and dask-worker commands to be available. It is recommended the Python environment matches your local environment where EC2Cluster is being created from.
  
  For GPU instance types the Docker image must have NVIDIA drivers and dask-cuda installed.
  
  By default the daskdev/dask:latest image will be used.
- **docker_args**: string (optional)  Extra command line arguments to pass to Docker.
- **env_vars**: dict (optional)  Environment variables to be passed to the worker.
- **silence_logs**: bool  Whether or not we should silence logging when setting up the cluster.
- **asynchronous**: bool  If this is intended to be used directly within an event loop with async/await
- **security**: [Security or bool, optional]  Configures communication security in this cluster. Can be a security object, or True. If True, temporary self-signed credentials will be created automatically. Default is True.
- **debug**: bool, optional  More information will be printed when constructing clusters to enable debugging.

**Examples**

Create the cluster.
```python
>>> from dask_cloudprovider.digitalocean import DropletCluster
>>> cluster = DropletCluster(n_workers=1)
Creating scheduler instance
Created droplet dask-38b817c1-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Created droplet dask-38b817c1-worker-dc95260d

Connect a client.
```}

```python
>>> from dask.distributed import Client
>>> client = Client(cluster)

Do some work.

```python
>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5001550986751964

Close the cluster

```python
>>> client.close()
>>> cluster.close()
Terminated droplet dask-38b817c1-worker-dc95260d
Terminated droplet dask-38b817c1-scheduler

You can also do this all in one go with context managers to ensure the cluster is created and cleaned up.

```python
>>> with DropletCluster(n_workers=1) as cluster:
...    with Client(cluster) as client:
...        print(da.random.random((1000, 1000), chunks=(100, 100)).mean().compute())
Creating scheduler instance
Created droplet dask-48efe585-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Created droplet dask-48efe585-worker-5181aaf1
0.5000558682356162
Terminated droplet dask-48efe585-worker-5181aaf1
Terminated droplet dask-48efe585-scheduler

Attributes

- asynchronous
- auto_shutdown
- bootstrap
- command
- dashboard_link
- docker_image
- gpu_instance

4.2. Droplet
name
observed
plan
requested
scheduler_address
scheduler_class
worker_class

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adapt(*args[, minimum, maximum])</td>
<td>Turn on adaptivity</td>
</tr>
<tr>
<td>call_async(f,*args, **kwargs)</td>
<td>Run a blocking function in a thread as a coroutine.</td>
</tr>
<tr>
<td>from_name(name)</td>
<td>Create an instance of this class to represent an existing cluster by name.</td>
</tr>
<tr>
<td>get_logs([cluster, scheduler, workers])</td>
<td>Return logs for the cluster, scheduler and workers</td>
</tr>
<tr>
<td>get_tags()</td>
<td>Generate tags to be applied to all resources.</td>
</tr>
<tr>
<td>new_worker_spec()</td>
<td>Return name and spec for the next worker</td>
</tr>
<tr>
<td>scale([n, memory, cores])</td>
<td>Scale cluster to n workers</td>
</tr>
<tr>
<td>scale_up([n, memory, cores])</td>
<td>Scale cluster to n workers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>close</td>
</tr>
<tr>
<td>get_cloud_init</td>
</tr>
<tr>
<td>logs</td>
</tr>
<tr>
<td>render_cloud_init</td>
</tr>
<tr>
<td>render_process_cloud_init</td>
</tr>
<tr>
<td>scale_down</td>
</tr>
<tr>
<td>sync</td>
</tr>
</tbody>
</table>
5.1 Overview

5.1.1 Authentication

In order to create clusters on GCP you need to set your authentication credentials. You can do this via the `gcloud` command line tool.

```
$ gcloud auth login
```

Alternatively you can use a service account which provides credentials in a JSON file. You must set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable to the path to the JSON file.

```
$ export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json
```

5.1.2 Project ID

To use Dask Cloudprovider with GCP you must also configure your Project ID. Generally when creating a GCP account you will create a default project. This can be found at the top of the GCP dashboard.

Your Project ID must be added to your Dask config file.

```
~/.config/dask/cloudprovider.yaml
cloudprovider:
 gcp:
 projectid: "YOUR PROJECT ID"
```

Or via an environment variable.
5.2 Google Cloud VMs

class dask_cloudprovider.gcp.GCPCluster:

Cluster running on GCP VM Instances.
This cluster manager constructs a Dask cluster running on Google Cloud Platform 67VMs.

When configuring your cluster you may find it useful to install the gcloud tool for querying the GCP API for available options.

https://cloud.google.com/sdk/gcloud

Parameters

- **projectid**: str
  Your GCP project ID. This must be set either here or in your Dask config.
  See the GCP docs page for more info.
  https://cloud.google.com/resource-manager/docs/creating-managing-projects

- **zone**: str
  The GCP zone to launch your cluster in. A full list can be obtained with gcloud compute zones list.

- **network**: str
  The GCP VPC network/subnetwork to use. The default is `default`. If using firewall rules, please ensure the following accesses are configured:
  - egress 0.0.0.0/0 on all ports for downloading docker images and general data access
  - ingress 0.0.0.0/8 on all ports for internal communication of workers
  - ingress 0.0.0.0/0 on 8786-8787 for external accessibility of the dashboard/scheduler
  - (optional) ingress 0.0.0.0/0 on 22 for ssh access

- **machine_type**: str
  The VM machine_type. You can get a full list with gcloud compute machine-types list. The default is `n1-standard-1` which is 3.75GB RAM and 1 vCPU

- **source_image**: str
  The OS image to use for the VM. Dask Cloudprovider will bootstrap Ubuntu based images automatically. Other images require Docker and for GPUs the NVIDIA Drivers and NVIDIA Docker.
  A list of available images can be found with gcloud compute images list

Valid values are:

- The short image name provided it is in `projectid`.

- The full image name `projects/<projectid>/global/images/<source_image>`.
• The full image URI such as those listed in `gcloud compute images list --uri`.

The default is `projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-v20201014`.

**docker_image**: string (optional)  The Docker image to run on all instances.

This image must have a valid Python environment and have `dask` installed in order for the `dask-scheduler` and `dask-worker` commands to be available. It is recommended the Python environment matches your local environment where EC2Cluster is being created from.

For GPU instance types the Docker image must have NVIDIA drivers and `dask-cuda` installed.

By default the `daskdev/dask:latest` image will be used.

**docker_args**: string (optional)  Extra command line arguments to pass to Docker.

**ngpus**: int (optional)  The number of GPUs to attach to the instance. Default is 0.

**gpu_type**: str (optional)  The name of the GPU to use. This must be set if `ngpus>0`. You can see a list of GPUs available in each zone with `gcloud compute accelerator-types list`.

**filesystem_size**: int (optional)  The VM filesystem size in GB. Defaults to 50.

**disk_type**: str (optional)  Type of disk to use. Default is `pd-standard`. You can see a list of disks available in each zone with `gcloud compute disk-types list`.

**on_host_maintenance**: str (optional)  The Host Maintenance GCP option. Defaults to `TERMINATE`.

**n_workers**: int (optional)  Number of workers to initialise the cluster with. Defaults to 0.

**bootstrap**: bool (optional)  Install Docker and NVIDIA drivers if `ngpus>0`. Set to `False` if you are using a custom `source_image` which already has these requirements. Defaults to `True`.

**worker_class**: str  The Python class to run for the worker. Defaults to `dask.distributed.Nanny`.

**worker_options**: dict (optional)  Params to be passed to the worker class. See `distributed.worker.Worker` for default worker class. If you set `worker_class` then refer to the docstring for the custom worker class.

**env_vars**: dict (optional)  Environment variables to be passed to the worker.

**scheduler_options**: dict (optional)  Params to be passed to the scheduler class. See `distributed.scheduler.Scheduler`.

**silence_logs**: bool (optional)  Whether or not we should silence logging when setting up the cluster.

**asynchronous**: bool (optional)  If this is intended to be used directly within an event loop with `async/await`.

**security**  [Security or bool (optional)]  Configures communication security in this cluster. Can be a security object, or True. If True, temporary self-signed credentials will be created automatically. Default is `True`.

**preemptible**: bool (optional)  Whether to use preemptible instances for workers in this cluster. Defaults to `False`.

---

5.2. Google Cloud VMs
debug: bool, optional  More information will be printed when constructing clusters to enable debugging.

Examples

Create the cluster.

```python
>>> from dask_cloudprovider.gcp import GCPCluster
>>> cluster = GCPCluster(n_workers=1)
Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-
→v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
Filesytsem Size: 50
N-GPU Type:
Zone: us-east1-c
Creating scheduler instance
dask-acc897b9-scheduler
 Internal IP: 10.142.0.37
 External IP: 34.75.60.62
Waiting for scheduler to run
Scheduler is running
Creating worker instance
dask-acc897b9-worker-bfbc94bc
 Internal IP: 10.142.0.39
 External IP: 34.73.245.220
```

Connect a client.

```python
>>> from dask.distributed import Client
>>> client = Client(cluster)
```

Do some work.

```python
>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5001550986751964
```

Close the cluster

```python
>>> cluster.close()
Closing Instance: dask-acc897b9-worker-bfbc94bc
Closing Instance: dask-acc897b9-scheduler
```

You can also do this all in one go with context managers to ensure the cluster is created and cleaned up.

```python
>>> with GCPCluster(n_workers=1) as cluster:
... with Client(cluster) as client:
... print(da.random.random((1000, 1000), chunks=(100, 100)).mean().
 →compute())
Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-
→v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
```

(continues on next page)
### Attributes

- asynchronous
- auto_shutdown
- bootstrap
- command
- dashboard_link
- docker_image
- gpu_instance
- name
- observed
- plan
- requested
- scheduler_address
- scheduler_class
- worker_class

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>adapt(*args[, minimum, maximum])</code></td>
<td>Turn on adaptivity</td>
</tr>
<tr>
<td><code>call_async(f, *args, **kwargs)</code></td>
<td>Run a blocking function in a thread as a coroutine.</td>
</tr>
<tr>
<td><code>from_name(name)</code></td>
<td>Create an instance of this class to represent an existing cluster by name.</td>
</tr>
<tr>
<td><code>get_logs([cluster, scheduler, workers])</code></td>
<td>Return logs for the cluster, scheduler and workers</td>
</tr>
<tr>
<td><code>get_tags()</code></td>
<td>Generate tags to be applied to all resources.</td>
</tr>
<tr>
<td><code>new_worker_spec()</code></td>
<td>Return name and spec for the next worker</td>
</tr>
<tr>
<td><code>scale(n, memory, cores)</code></td>
<td>Scale cluster to n workers</td>
</tr>
<tr>
<td><code>scale_up(n, memory, cores)</code></td>
<td>Scale cluster to n workers</td>
</tr>
</tbody>
</table>

### 5.2. Google Cloud VMs
<table>
<thead>
<tr>
<th>close</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_cloud_init</td>
</tr>
<tr>
<td>logs</td>
</tr>
<tr>
<td>render_cloud_init</td>
</tr>
<tr>
<td>render_process_cloud_init</td>
</tr>
<tr>
<td>scale_down</td>
</tr>
<tr>
<td>sync</td>
</tr>
</tbody>
</table>
CHAPTER 6

Microsoft Azure

---

_AzureVMCluster(location, resource_group, ...) Cluster running on Azure Virtual machines._

### 6.1 Overview

#### 6.1.1 Authentication

In order to create clusters on Azure you need to set your authentication credentials. You can do this via the `az` command line tool.

$h$ az login

Note: Setting the default output to **table** with `az configure` will make the `az` tool much easier to use.

#### 6.1.2 Resource Groups

To create resources on Azure they must be placed in a resource group. Dask Cloudprovider will need a group to create Dask components in.

You can list existing groups via the cli.

$h$ az group list

You can also create a new resource group if you do not have an existing one.

$h$ az group create --location <location> --name <resource group name> --subscription <subscription>

You can get a full list of locations with `az account list-locations` and subscriptions with `az account list`. 

---

31
Take note of your resource group name for later.

### 6.1.3 Virtual Networks

Compute resources on Azure must be placed in virtual networks (vnet). Dask Cloudprovider will require an existing vnet to connect compute resources to.

You can list existing vnets via the cli.

```bash
$ az network vnet list
```

You can also create a new vnet via the cli.

```bash
$ az network vnet create -g <resource group name> -n <vnet name> --address-prefix 10.0.0.0/16 --subnet-name <subnet name> --subnet-prefix 10.0.0.0/24
```

This command will create a new vnet in your resource group with one subnet with the 10.0.0.0/24 prefix. For more than 255 compute resources you will need additional subnets.

Take note of your vnet name for later.

### 6.1.4 Security Groups

To allow network traffic to reach your Dask cluster you will need to create a security group which allows traffic on ports 8786-8787 from wherever you are.

You can list existing security groups via the cli.

```bash
$ az network nsg list
```

Or you can create a new security group.

```bash
$ az network nsg create -g <resource group name> --name <security group name>
$ az network nsg rule create -g <resource group name> --nsg-name <security group name> -n MyNsgRuleWithAsg --priority 500 --source-address-prefixes Internet --destination-port-ranges 8786 8787 --destination-address-prefixes '*' --access Allow --protocol Tcp --description "Allow Internet to Dask on ports 8786,8787."
```

This example allows all traffic to 8786-8787 from the internet. It is recommended you make your rules more restrictive than this by limiting it to your corporate network or specific IP.

Again take note of this security group name for later.
6.2 AzureVM

class dask_cloudprovider.azure.AzureVMCluster (location: str = None, resource_group: str = None, vnet: str = None, security_group: str = None, public_ingress: bool = None, vm_size: str = None, scheduler_vm_size: str = None, disk_size: int = None, vm_image: dict = {}, **kwargs)

Cluster running on Azure Virtual machines.

This cluster manager constructs a Dask cluster running on Azure Virtual Machines.

When configuring your cluster you may find it useful to install the az tool for querying the Azure API for available options.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Parameters

location: str The Azure location to launch you cluster in. List available locations with az account list-locations.

resource_group: str The resource group to create components in. List your resource groups with az group list.

vnet: str The vnet to attach VM network interfaces to. List your vnets with az network vnet list.

security_group: str The security group to apply to your VMs. This must allow ports 8786-8787 from wherever you are running this from. List your security groups with az network nsg list.

public_ingress: bool Assign a public IP address to the scheduler. Default True.

vm_size: str Azure VM size to use for scheduler and workers. Default Standard_DS1_v2. List available VM sizes with az vm list-sizes --location <location>.

disk_size: int Specifies the size of the VM host OS disk in gigabytes. Default is 50. This value cannot be larger than 1023.

scheduler_vm_size: str Azure VM size to use for scheduler. If not set will use the vm_size.

vm_image: dict By default all VMs will use the latest Ubuntu LTS release with the following configuration

{"publisher": "Canonical", "offer": "UbuntuServer","sku": "18.04-LTS", "version": "latest"}

You can override any of these options by passing a dict with matching keys here. For example if you wish to try Ubuntu 19.04 you can pass{"sku": "19.04"} and the publisher, offer and version will be used from the default.

bootstrap: bool (optional) It is assumed that the VHD will not have Docker installed (or the NVIDIA drivers for GPU instances). If bootstrap is True these dependencies will be installed on instance start. If you are using a custom VHD which already has these dependencies set this to False.

auto_shutdown: bool (optional) Shutdown the VM if the Dask process exits. Default True.
worker_module: str  The Dask worker module to start on worker VMs.

n_workers: int  Number of workers to initialise the cluster with. Defaults to 0.

worker_module: str  The Python module to run for the worker. Defaults to distributed.

worker_options: dict  Params to be passed to the worker class. See distributed.

worker.Worker for default worker class. If you set worker_module then refer to
the docstring for the custom worker class.

scheduler_options: dict  Params to be passed to the scheduler class. See distributed.

scheduler.Scheduler.

docker_image: string (optional)  The Docker image to run on all instances.

   This image must have a valid Python environment and have dask installed in order for the
dask-scheduler and dask-worker commands to be available. It is recommended the
Python environment matches your local environment where AzureVMCluster is being
created from.

   For GPU instance types the Docker image much have NVIDIA drivers and dask-cuda
installed.

   By default the daskdev/dask:latest image will be used.

docker_args: string (optional)  Extra command line arguments to pass to Docker.

silence_logs: bool  Whether or not we should silence logging when setting up the cluster.

asynchronous: bool  If this is intended to be used directly within an event loop with async/await

security [Security or bool, optional]  Configures communication security in this cluster. Can
be a security object, or True. If True, temporary self-signed credentials will be created
automatically. Default is True.

debg: bool, optional  More information will be printed when constructing clusters to enable
debugging.

marketplace_plan: dict (optional)  Plan information dict necessary for creating a virtual ma-
chine from Azure Marketplace image or a custom image sourced from a Marketplace image
with a plan. Default is {}.

   All three fields “name”, “publisher”, “product” must be passed in the dictionary if set. For
   e.g.

   {"name": "ngc-base-version-21-02-2", "publisher":
   "nvidia","product": "ngc_azure_17_11"}

Examples

Minimal example

Create the cluster

```python
>>> from dask_cloudprovider.azure import AzureVMCluster
>>> cluster = AzureVMCluster(resource_group="<resource group>",
... vnet="<vnet>",
... security_group="<security group>",
... n_workers=1)
Creating scheduler instance
Assigned public IP
```

(continues on next page)
Network interface ready
Creating VM
Created VM dask-5648cc8b-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Network interface ready
Creating VM
Created VM dask-5648cc8b-worker-e1ebfc0e

Connect a client.

```python
>>> from dask.distributed import Client
>>> client = Client(cluster)
```

Do some work.

```python
>>> import dask.array as da

>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5004117488368686
```

Close the cluster.

```python
>>> client.close()
```

```python
>>> cluster.close()
```

## 6.2. AzureVM

You can also do this all in one go with context managers to ensure the cluster is created and cleaned up.

```python
>>> with AzureVMCluster(resource_group="<resource group>",
... vnet="<vnet>",
... security_group="<security group>",
... n_workers=1) as cluster:
... with Client(cluster) as client:
... print(da.random.random((1000, 1000), chunks=(100, 100)).mean().compute())
```

Creating scheduler instance
Assigned public IP
Network interface ready
Creating VM
Created VM dask-1e6dac4e-scheduler
Waiting for scheduler to run
Scheduler is running
Creating worker instance
Network interface ready
Creating VM
Created VM dask-1e6dac4e-worker-c7c4ca23
0.4996427609642539
Terminated VM dask-1e6dac4e-worker-c7c4ca23

(continues on next page)
Removed disks for VM dask-1e6dac4e-worker-c7c4ca23
Deleted network interface
Terminated VM dask-1e6dac4e-scheduler
Removed disks for VM dask-1e6dac4e-scheduler
Deleted network interface
Unassigned public IP

RAPIDS example

You can also use AzureVMCluster to run a GPU enabled cluster and leverage the RAPIDS accelerated libraries.

```python
>>> cluster = AzureVMCluster(resource_group="<resource group>",
... vnet="<vnet>",
... security_group="<security group>",
... n_workers=1,
... vm_size="Standard_NC12s_v3", # Or any NVIDIA GPU
... docker_image="rapidsai/rapidsai:cuda11.0-runtime-
... ubuntu18.04-py3.8",
... worker_class="dask_cuda.CUDAWorker")
```

Run some GPU code.

```python
>>> def get_gpu_model():
... import pynvml
... pynvml.nvmlInit()
... return pynvml.nvmlDeviceGetName(pynvml.nvmlDeviceGetHandleByIndex(0))
```

```python
>>> client.submit(get_gpu_model).result()
```

b'Tesla V100-PCIE-16GB'

Close the cluster.

```python
>>> client.close()
>>> cluster.close()
```

Attributes

asynchronous
auto_shutdown
bootstrap
command
dashboard_link
docker_image
gpu_instance
name
observed
plan
Methods

- `adapt(*args[, minimum, maximum])` Turn on adaptivity
- `call_async(f, *args, **kwargs)` Run a blocking function in a thread as a coroutine.
- `from_name(name)` Create an instance of this class to represent an existing cluster by name.
- `get_logs([cluster, scheduler, workers])` Return logs for the cluster, scheduler and workers
- `get_tags()` Generate tags to be applied to all resources.
- `new_worker_spec()` Return name and spec for the next worker
- `scale(n, memory, cores)`: Scale cluster to n workers
- `scale_up(n, memory, cores)`: Scale cluster to n workers

6.3 Azure Spot Instance Plugin

class `dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin` (`poll_interval_s=1, metadata_url=None, termination_events=None, termination_offset_minutes=0`)

A worker plugin for azure spot instances

This worker plugin will poll azure’s metadata service for preemption notifications. When a node is preempted, the plugin will attempt to shutdown gracefully all workers on the node.

This plugin can be used on any worker running on azure spot instances, not just the ones created by dask-cloudprovider.

For more details on azure spot instances see: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/scheduled-events

**Parameters**

- `poll_interval_s: int (optional)` The rate at which the plugin will poll the metadata service in seconds.
  
  Defaults to 1
metadata_url: str (optional) The url of the metadata service to poll.


termination_events: List[str] (optional) The type of events that will trigger the graceful shutdown

Defaults to ['Preempt', 'Terminate']

termination_offset_minutes: int (optional) Extra offset to apply to the preemption date. This may be negative, to start the graceful shutdown before the NotBefore date. It can also be positive, to start the shutdown after the NotBefore date, but this is at your own risk.

Defaults to 0

Examples

Let’s say you have cluster and a client instance. For example using dask_kubernetes.KubeCluster

```python
>>> from dask_kubernetes import KubeCluster
>>> from distributed import Client

>>> cluster = KubeCluster()
>>> client = Client(cluster)

You can add the worker plugin using the following:

```python
>>> from dask_cloudprovider.azure import AzurePreemptibleWorkerPlugin

>>> client.register_worker_plugin(AzurePreemptibleWorkerPlugin())
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>release_key(key, state, cause, reason, report)</td>
<td>Called when the worker releases a task.</td>
</tr>
<tr>
<td>setup(worker)</td>
<td>Run when the plugin is attached to a worker.</td>
</tr>
<tr>
<td>teardown(worker)</td>
<td>Run when the worker to which the plugin is attached to is closed</td>
</tr>
<tr>
<td>transition(key, start, finish, **kwargs)</td>
<td>Throughout the lifecycle of a task (see Worker), Workers are instructed by the scheduler to compute certain tasks, resulting in transitions in the state of each task.</td>
</tr>
</tbody>
</table>

poll_status

setup(worker)

Run when the plugin is attached to a worker. This happens when the plugin is registered and attached to existing workers, or when a worker is created after the plugin has been registered.

tear down (worker)

Run when the worker to which the plugin is attached to is closed
Hetzner

7.1 Overview

7.1.1 Authentication

To authenticate with Hetzner you must first generate a personal access token.

Then you must put this in your Dask configuration at `cloudprovider.hetzner.token`. This can be done by adding the token to your YAML configuration or exporting an environment variable.

```yaml
# ~/.config/dask/cloudprovider.yaml
cloudprovider:
  hetzner:
    token: "yourtoken"
```

```bash
$ export DASK_CLOUDPROVIDER__HETZNER__TOKEN="yourtoken"
```

```python
class dask_cloudprovider.hetzner.HetznerCluster(bootstrap: str = None, image: str = None, location: str = None, server_type: str = None, docker_image: str = None, **kwargs)
```

VMs in Hetzner are referred to as vServers. This cluster manager constructs a Dask cluster running on VMs.

When configuring your cluster you may find it useful to install the `hcloud` tool for querying the Hetzner API for available options.

https://github.com/hetznercloud/cli

Parameters
The image to use for the host OS. This should be a Ubuntu variant. You can list available images with `hcloud image list|grep Ubuntu`.

The Hetzner location to launch you cluster in. A full list can be obtained with `hcloud location list`.

The VM server type. You can get a full list with `hcloud server-type list`. The default is `cx11` which is vServer with 2GB RAM and 1 vCPU.

Number of workers to initialise the cluster with. Defaults to 0.

The Python module to run for the worker. Defaults to `distributed.cli.dask_worker`.

Params to be passed to the worker class. See `distributed.worker.Worker` for default worker class. If you set `worker_module` then refer to the docstring for the custom worker class.

Params to be passed to the scheduler class. See `distributed.scheduler.Scheduler`.

Environment variables to be passed to the worker.

Attributes

- asynchronous
- auto_shutdown
- bootstrap
- command
- dashboard_link
- docker_image
- gpu_instance
- name
- observed
- plan
- requested
- scheduler_address
- scheduler_class
- worker_class

Methods

- `adapt(*args[, minimum, maximum])` Turn on adaptivity
- `call_async(f, *args, **kwargs)` Run a blocking function in a thread as a coroutine.
- `from_name(name)` Create an instance of this class to represent an existing cluster by name.
- `get_logs([cluster, scheduler, workers])` Return logs for the cluster, scheduler and workers
- `get_tags()` Generate tags to be applied to all resources.
- `new_worker_spec()` Return name and spec for the next worker

Continued on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scale</code> ([n, memory, cores])</td>
<td>Scale cluster to n workers</td>
</tr>
<tr>
<td><code>scale_up</code> ([n, memory, cores])</td>
<td>Scale cluster to n workers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>close</code></td>
</tr>
<tr>
<td><code>get_cloud_init</code></td>
</tr>
<tr>
<td><code>logs</code></td>
</tr>
<tr>
<td><code>render_cloud_init</code></td>
</tr>
<tr>
<td><code>render_process_cloud_init</code></td>
</tr>
<tr>
<td><code>scale_down</code></td>
</tr>
<tr>
<td><code>sync</code></td>
</tr>
</tbody>
</table>
This document contains frequently asked troubleshooting problems.

8.1 Unable to connect to scheduler

The most common issue is not being able to connect to the cluster once it has been constructed.

Each cluster manager will construct a Dask scheduler and by default expose it via a public IP address. You must be able to connect to that address on ports 8786 and 8787 from wherever your Python session is.

If you are unable to connect to this address it is likely that there is something wrong with your network configuration, for example you may have corporate policies implementing additional firewall rules on your account.

To reduce the chances of this happening it is often simplest to run Dask Cloudprovider from within the cloud you are trying to use and configure private networking only. See your specific cluster manager docs for info.

8.2 Invalid CPU or Memory

When working with `FargateCluster` or `ECSCluster`, CPU and memory arguments can only take values from a fixed set of combinations.

So, for example, code like this will result in an error

```python
from dask_cloudprovider import FargateCluster
cluster = FargateCluster(
    image="daskdev/dask:latest",
    worker_cpu=256,
    worker_mem=30720,
    n_workers=2,
    fargate_use_private_ip=False,
    scheduler_timeout="15 minutes"
)
```

(continues on next page)
client = Client(cluster)
cluster

botocore.errorfactory.ClientException:
An error occurred (ClientException) when calling the RegisterTaskDefinition_→operation:
No Fargate configuration exists for given values.

This is because ECS and Fargate task definitions with CPU=256 cannot have as much memory as that code is requesting.

The AWS-accepted set of combinations is documented at https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html.

8.3 Requested CPU Configuration Above Limit

When creating a FargateCluster or or ECSCluster, or adding additional workers, you may receive an error response with “The requested CPU configuration is above your limit”. This means that the scheduler and workers requested and any other EC2 resources you have running in that region use up more than your current service quota limit for vCPUs.

You can adjust the scheduler and/or worker CPUs with the scheduler_cpu and worker_cpu arguments. See the “Invalid CPU or Memory” section in this document for more information.

However, to get the desired cluster configuration you’ll need to request a service limit quota increase.

Go to https://<region>.aws.amazon.com/servicequotas/home/services/ec2/quotas and request an increase for “Running On-Demand Standard (A, C, D, H, I, M, R, T, Z) instances”.
Dask Cloudprovider aims to balance ease of use with security best practices. The two are not always compatible so this document aims to outline the compromises and decisions made in this library.

9.1 Public Schedulers

For each cluster manager to work correctly it must be able to make a connection to the Dask scheduler on port 8786. In many cluster managers the default option is to expose the Dask scheduler and dashboard to the internet via a public IP address. This makes things quick and easy for new users to get up and running, but may pose a security risk long term.

Many organisations have policies which do not allow users to assign public IP addresses or open ports. Our best practices advice is to use Dask Cloudprovider from within a cloud platform, either from a VM or a managed environment. Then disable public networking.

See each cluster manager for configuration options.

9.2 Authentication and encryption

Cluster managers such as `dask_cloudprovider.aws.EC2Cluster`, `dask_cloudprovider.azure.AzureVMCluster`, `dask_cloudprovider.gcp.GCPCluster` and `dask_cloudprovider.digitalocean.DropletCluster` enable certificate based authentication and encryption by default.

When a cluster is launched with any of these cluster managers a set of temporary keys will be generated and distributed to the cluster nodes via their startup script. All communication between the client, scheduler and workers will then be encrypted and only clients and workers with valid certificates will be able to connect to the scheduler.

You can also specify your own certificates using the `distributed.security.Security` object.

```python
>>> from dask_cloudprovider.gcp import GCPCluster
>>> from dask.distributed import Client
```
You can disable secure connections by setting the `security` keyword argument to `False`. This may be desirable when troubleshooting or when running on a trusted network (entirely inside a VPC for example).
Many cloud providers have GPU offerings and so it is possible to launch GPU enabled Dask clusters with Dask Cloudprovider.

Each cluster manager handles this differently but generally you will need to configure the following settings:

- Configure the hardware to include GPUs. This may be by changing the hardware type or adding accelerators.
- Ensure the OS/Docker image has the NVIDIA drivers. For Docker images it is recommended to use the [RAPIDS images](https://hub.docker.com/r/rapidsai/rapidsai/).
- Set the `worker_module` config option to `dask_cuda.cli.dask_cuda_worker` or `worker_command` option to `dask-cuda-worker`.

In the following AWS `dask_cloudprovider.aws.EC2Cluster` example we set the `ami` to be a Deep Learning AMI with NVIDIA drivers, the `docker_image` to RAPIDS, the `instance_type` to `p3.2xlarge` which has one NVIDIA Tesla V100 and the `worker_module` to `dask_cuda.cli.dask_cuda_worker`.

```python
>>> cluster = EC2Cluster(ami="ami-0c7c7d78f752f8f17", # Example Deep Learning AMI
                      docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04",
                      instance_type="p3.2xlarge",
                      worker_module="dask_cuda.cli.dask_cuda_worker",
                      bootstrap=False,
                      filesystem_size=120)
```

See each cluster manager’s example sections for info on starting a GPU cluster.
CHAPTER 11

Creating custom OS images with Packer

Many cloud providers in Dask Cloudprovider involve creating VMs and installing dependencies on those VMs at boot time.
This can slow down the creation and scaling of clusters, so this page discusses building custom images using Packer to speed up cluster creation.
Packer is a utility which boots up a VM on your desired cloud, runs any installation steps and then takes a snapshot of the VM for use as a template for creating new VMs later. This allows us to run through the installation steps once, and then reuse them when starting Dask components.

11.1 Installing Packer

See the official install docs.

11.2 Packer Overview

To create an image with packer we need to create a JSON config file.
A Packer config file is broken into a couple of sections, builders and provisioners.
A builder configures what type of image you are building (AWS AMI, GCP VMI, etc). It describes the base image you are building on top of and connection information for Packer to connect to the build instance.
When you run packer build /path/to/config.json a VM (or multiple VMs if you configure more than one) will be created automatically based on your builders config section.
Once your build VM is up and running the provisioners will be run. These are steps to configure and provision your machine. In the examples below we are mostly using the shell provisioner which will run commands on the VM to set things up.
Once your provisioning scripts have completed the VM will automatically stop, a snapshot will be taken and you will be provided with an ID which you can then use as a template in future runs of dask-cloudprovider.
11.3 Image Requirements

Each cluster manager that uses VMs will have specific requirements for the VM image. The AWS ECSCluster for example requires ECS optimised AMIs.

The VM cluster managers such as EC2Cluster and DropletCluster just require Docker to be installed (or NVIDIA Docker for GPU VM types).

11.4 Examples

11.4.1 EC2Cluster with cloud-init

When any of the VMCluster based cluster managers, such as EC2Cluster, launch a new default VM it uses the Ubuntu base image and installs all dependencies with cloud-init.

Instead of doing this every time we could use Packer to do this once, and then reuse that image every time.

Each VMCluster cluster manager has a class method called get_cloud_init which takes the same keyword arguments as creating the object itself, but instead returns the cloud-init file that would be generated.

```python
from dask_cloudprovider.aws import EC2Cluster

cloud_init_config = EC2Cluster.get_cloud_init(
    # Pass any kwargs here you would normally pass to `EC2Cluster`
)
print(cloud_init_config)
```

We should see some output like this.

```
#cloud-config

packages:
- apt-transport-https
- ca-certificates
- curl
- gnupg-agent
- software-properties-common

# Enable ipv4 forwarding, required on CIS hardened machines
write_files:
- path: /etc/sysctl.d/enabled_ipv4_forwarding.conf
  content: |
    net.ipv4.conf.all.forwarding=1

# create the docker group
groups:
- docker

# Add default auto created user to docker group
system_info:
default_user:
  groups: [docker]

runcmd:
```

(continues on next page)
Install Docker
```bash
- curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
- add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
- apt-get update -y
- apt-get install -y docker-ce docker-ce-cli containerd.io
- systemctl start docker
- systemctl enable docker
```

Run container
```bash
- docker run --net=host daskdev/dask:latest dask-scheduler --version
```

We should save this output somewhere for reference later. Let’s refer to it as `/path/to/cloud-init-config.yaml`.

Next we need a Packer config file to build our image, let’s refer to it as `/path/to/config.json`. We will use the official Ubuntu 20.04 image and specify our cloud-init config file in the `user_data_file` option.

Packer will not necessarily wait for our cloud-init config to finish executing before taking a snapshot, so we need to add a provisioner that will block until the cloud-init completes.

```json
{
  "builders": [
    {
      "type": "amazon-ebs",
      "region": "eu-west-2",
      "source_ami_filter": {
        "filters": {
          "virtualization-type": "hvm",
          "name": "ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*",
          "root-device-type": "ebs"
        },
        "owners": [099720109477]
      },
      "most_recent": true,
      "instance_type": "t2.micro",
      "ssh_username": "ubuntu",
      "ami_name": "dask-cloudprovider {{timestamp}}",
      "user_data_file": "/path/to/cloud-init-config.yaml"
    }
  ],
  "provisioners": [
    {
      "type": "shell",
      "inline": [
        "echo 'Waiting for cloud-init'; while [ ! -f /var/lib/cloud/instance/boot-finished ]; do sleep 1; done; echo 'Done'"
      ]
    }
  ]
}
```

Then we can build our image with `packer build /path/to/config.json`.

Then to use our new image we can create an `EC2Cluster` specifying the AMI and disabling the automatic boot-strapping.
from dask.distributed import Client
from dask_cloudprovider.aws import EC2Cluster

c = EC2Cluster(
 ami="ami-064f8db7634d19647", # AMI ID provided by Packer
 bootstrap=False
)
c.scale(2)

c = Client(c)
Your cluster is ready to use

11.4.2 EC2Cluster with RAPIDS

To launch RAPIDS on AWS EC2 we can select a GPU instance type, choose the official Deep Learning AMIs that Amazon provides and run the official RAPIDS Docker image.

```python
from dask_cloudprovider.aws import EC2Cluster

c = EC2Cluster(
    ami="ami-0c7c7d78f752f8f17",  # Deep Learning AMI (this ID varies by region so find yours in the AWS Console)
    docker_image="rapidsai/rapidsai:cuda10.1-runtime-ubuntu18.04-py3.8",
    instance_type="p3.2xlarge",
    bootstrap=False,  # Docker is already installed on the Deep Learning AMI
    filesystem_size=120,
)
c.scale(2)
```

However every time a VM is created by EC2Cluster the RAPIDS Docker image will need to be pulled from Docker Hub. The result is that the above snippet can take ~20 minutes to run, so let’s create our own AMI which already has the RAPIDS image pulled.

In our builders section we will specify we want to build on top of the latest Deep Learning AMI by specifying "Deep Learning AMI (Ubuntu 18.04) Version *" to list all versions and "most_recent": true to use the most recent.

We also restrict the owners to 898082745236 which is the ID for the official image channel.

The official image already has the NVIDIA drivers and NVIDIA Docker runtime installed so the only step we need to do is to pull the RAPIDS Docker image. That way when a scheduler or worker VM is created the image will already be available on the machine.

```json
{
    "builders": [
        {
            "type": "amazon-ebs",
            "region": "eu-west-2",
            "source_ami_filter": {
                "filters": {
                    "virtualization-type": "hvm",
                    "name": "Deep Learning AMI (Ubuntu 18.04) Version *",
                    "root-device-type": "ebs"
                },
                "owners": [
                    "898082745236"
                ]
            }
        }
    ]
}
```

(continues on next page)
Then we can build our image with `packer build /path/to/config.json`. It took over 20 minutes to build this image, but now that we've done it once we can reuse the image in our RAPIDS powered Dask clusters.

We can then run our code snippet again but this time it will take less than 5 minutes to get a running cluster.

```python
from dask.distributed import Client
from dask_cloudprovider.aws import EC2Cluster

cluster = EC2Cluster(
    ami="ami-04e5539cb82859e69",  # AMI ID provided by Packer
docker_image="rapidsai/rapidsai:cudai0.1-runtime-ubuntu18.04-py3.8",
instance_type="p3.2xlarge",
bootstrap=False,
filesystem_size=120,
)
cluster.scale(2)

client = Client(cluster)
# Your cluster is ready to use
```
Releasing

Releases are published automatically when a tag is pushed to GitHub.

```bash
# Set next version number
export RELEASE=x.x.x

# Create tags
git commit --allow-empty -m "Release $RELEASE"
git tag -a $RELEASE -m "Version $RELEASE"

# Push
git push upstream --tags
```
Index

A
AzurePreemptibleWorkerPlugin (class in dask_cloudprovider.azure), 37
AzureVMCluster (class in dask_cloudprovider.azure), 33

D
DropletCluster (class in dask_cloudprovider.digitalocean), 21

E
EC2Cluster (class in dask_cloudprovider.aws), 8
ECSCluster (class in dask_cloudprovider.aws), 12

F
FargateCluster (class in dask_cloudprovider.aws), 17

G
GCPCluster (class in dask_cloudprovider.gcp), 26

H
HetznerCluster (class in dask_cloudprovider.hetzner), 39

S
setup() (dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin method), 38

T
tear down() (dask_cloudprovider.azure.AzurePreemptibleWorkerPlugin method), 38